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Abstract

The Hochschild cohomology is a tool for studying associative algebras that has a lot of
structure: it is a Gerstenhaber algebra, and computing this structure is difficult. We will
give a mild introduction to this cohomology, as well as some of the recent developments
by Volkov on how to understand it independently of the resolution. We will then present
a result by Le and Zhou that motivates our line of work: it justifies looking at (twisted)
tensor products of algebras. This object will be defined and the resolution-focused approach
by Shepler and Witherspoon will be sketched. Our contributions will follow, including how
to compute the Gerstenhaber bracket on twisted tensor products. These new results extend
and generalize the existing literature, including Le and Zhou’s result. This is joint work
with Tekin Karadag, Dustin McPhate, Tolulope Oke, and Sarah Witherspoon.
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1 Hochschild cohomology

Definition 1. Let A be a k-algebra (our algebras are unital and associative, I’m not a monster.
We define the Hochschild cohomology as): HHn(A) = ExtnAe(A,A) where Ae = A⊗Aop (is called
the enveloping algebra of A). It comes with two operations (defined on cochains):

^ : HHm(A)×HHn(A) −→ HHm+n(A),

[−,−] : HHm(A)×HHn(A) −→ HHm+n−1(A).

As is common when studying complicated objects, we can tackle problems by reducing them
to an easier case. The cup product makes HH∗(A) into a graded commutative algebra, and now
in the world of commutative things hopefully understanding this is easier. However, the payoff
is that the bracket is quite complicated.

The two operations are called the cup product and the Gerstenhaber bracket, and together
with some compatibility conditions, make HH∗(A) into a Gerstenhaber algebra. This structure
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can be thought of as a graded Lie algebra. Since this defines the HHn(A) as an Ext group, it
does not matter which projective resolution of A we choose when looking at this cohomology.
However, both operations are natively defined on the “bar resolution”.

Definition 2. For any n ∈ N, consider A⊗(n+2) as an Ae-module (by multiplication on the
outermost factors) and the sequence:

· · · d3−→ A⊗4
d2−→ A⊗3

d1−→ A⊗A µA−→ A

with

dn(a0 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · an+1

for all a0, . . . , an+1 ∈ A. This is (called) the (augmented) bar resolution of A.

Notice that it is a complex in the same way as the simplicial complex of a triangulation of a
manifold, and it is also exact, in fact, it has a contracting homotopy

sn(a0 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ · · · ⊗ an+1.

The bar resolution is a very nice one, big but somewhat reasonable to work with, and free as
Ae-modules. I will spare you the full computation of the HH∗(A) of any algebra, but we can
do some of the lower degrees together. Notice how the following computations rely heavily on
inside knowledge of the resolution being used.

• Degree 0: we have HH0(A) = ker(d∗1), so pick any α ∈ homAe(A ⊗ A,A) also in ker(d∗1),
we have for all a ∈ A:

0 = d∗1(α)(1⊗ a⊗ 1) = α(d1(1⊗ α⊗ 1)) = α(a⊗ 1− 1⊗ a) = aα(1⊗ 1)− α(1⊗ 1)a

Notice that since α is determined by its value α(1 ⊗ 1) ∈ A, this is enough. Conversely,
any element of the algebra A defines a function in homAe(A⊗ A,A), and additionally for
all z ∈ Z(A) and a, b ∈ A setting αz(a⊗ b) = azc gives a function αz ∈ homAe(A⊗ A,A)
also in ker(d∗1). Thus as k-modules we have that HH0(A) ∼= Z(A).

• Degree 1: we have HH1(A) = ker(d∗2)/ im(d∗1). Doing an analogous analysis to the above,
we obtain that as k-modules ker(d∗2) ∼= Der(A,A) the space of k-derivations from A to A,
im(d∗1) ∼= InnDer(A,A) the space of inner k-derivations from A to A. Hence as a k-module
HH1(A) ∼= OutDer(A,A) the space of outer k-derivations from A to A.

• Degree 2: we have HH2(A) = ker(d∗3)/ im(d∗2). Doing a similar analysis as done above,
we obtain that as k-modules ker(d∗3) are the infinitesimal deformations of A, and im(d∗2)
are the infinitesimal deformations of A that give an algebra isomorphic to the original A.
Hence we can think of HH2(A) as encoding the “important” infinitesimal deformations. I
will not define what an infinitesimal deformation is, but the name is quite suggestive.

This hints at HH∗(A) encoding algebraically some form of infinitesimal information of A.
Hopefully this justifies the interest and usefulness of Hochschild cohomology in representation
theory, homological algebra, and other areas.

Definition 3. (Given A a k-algebra,) let µP : P → A be a resolution of A-bimodules, ∆P :
P → P ⊗A P a diagonal map, and α ∈ HomAe(Pm, A) a cocycle. A homotopy lifting (of α with
respect to ∆P ) is (an A-bimodule chain homomorphism) ψα : P → P [1 −m] satisfying (some
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very) technical conditions (depending only on the augmentation map µP , the diagonal map ∆P ,
and the cocycle α:

d(ψα) = (α⊗ 1P − 1P ⊗ α)∆P , and µPψα is cohomologous to (−1)m−1αψ

for some A-bimodule chain map ψ : P → P [1] for which d(ψ) = (µP ⊗ 1P − 1P ⊗ µP )∆P ).

The technical conditions do not require inside knowledge of the resolution, which is of vital
importance. Moreover, Volkov proved that for any resolution, for any diagonal, and for any
cocycle, homotopy liftings always exist! Moreover, they induce the Gerstenhaber bracket in
cohomology! This is absolutely fantastic.

Theorem 4. The bracket (given at the chain level by):

[α, β] = αψβ − (−1)(m−1)(n−1)βψα

induces the Gerstenhaber bracket (on Hochschild cohomology).

2 Twisted tensor product of algebras

The motivating result for looking at twisted tensor products is the following result.

Theorem 5 (Le-Zhou 2014). Let A and B be k-algebras, at least one of them finite dimensional.
Then (as Gerstenhaber algebras):

HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B).

This was proven using the cumbersome Alexander-Whitney and Eilenberg-Zilber maps.

Definition 6. Let A and B be k-algebras, a twisting map τ : B ⊗ A → A ⊗ B is a bijective
k-linear map (with the conditions τ(1B ⊗ a) = a⊗ 1B, τ(b⊗ 1A) = 1A ⊗ b for all a ∈ A, b ∈ B,
and:

τ ◦ (mB ⊗mA) = (mA ⊗mB) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

or equivalently

B ⊗B ⊗A⊗A B ⊗A⊗B ⊗A A⊗B ⊗A⊗B

B ⊗A A⊗B A⊗A⊗B ⊗B

1⊗τ⊗1

mB⊗mA

τ⊗τ

1⊗τ⊗1

τ mA⊗mB

is a commutative diagram). The twisted tensor algebra A⊗τ B is A⊗B (as a vector space) with
(as it turns out associative) multiplication:

mA⊗τB : A⊗B ⊗A⊗B A⊗A⊗B ⊗B A⊗B.1⊗τ⊗1 mA⊗mB

Example 7. Let A, B be k-algebras graded by the commutative groups F , G respectively, let
t : F ⊗Z G → k× be a bicharacter. Then τ(b⊗ a) = t(|a|, |b|)a⊗ b is a twisting map, we denote
A⊗t B = A⊗τ B.

Theorem 8 (Shepler-Witherspoon 2019). Under some compatibility conditions, given P → A,
Q → B (projective bimodule resolutions of A, B respectively, and a twisting map τ : B ⊗ A →
A⊗B), we can construct P ⊗τ Q→ A⊗τ B (a projective bimodule resolution of A⊗τ B).
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3 Our contributions and applications

Theorem 9 (KMOOW). Let P → A, Q → B (projective bimodule resolutions of A, B re-
spectively) such that P ⊗τ Q → A ⊗τ B is nice (a counital differential graded coalgebra) and
σ : (P ⊗τ Q)⊗A⊗τB (P ⊗τ Q)→ (P ⊗A P )⊗τ (Q⊗BQ) is (also) nice (a chain map isomorphism
satisfying some technical conditions). Then the (Gerstenhaber) bracket (is given) explicitly.

The condition over σ is that:

µP ⊗ µQ ⊗ 1P ⊗ 1Q − 1P ⊗ 1Q ⊗ µP ⊗ µQ = (µP ⊗ 1P ⊗ µQ ⊗ 1Q − 1P ⊗ µP ⊗ 1Q ⊗ µQ)σ

and the bracket is given by [α, β] = αψβ− (−1)(m−1)(n−1)βψα with ψα = φ(1⊗α⊗1)∆(2) where
φ = (φP ⊗µQ⊗1Q+1P ⊗µP ⊗φQ)σ where φP is a contracting homotopy for µP ⊗1P −1P ⊗µP .

This allows computing the Gerstenhaber bracket in the Hochschild cohomology of a twisted
tensor product A⊗τ B, a notoriously difficult task, as long as we know the Gerstenhaber bracket
in the respective Hochschild cohomologies of A and B. This has applications in, for example,
deformations of algebras.

Proof. (The proof of this method uses fairly) elementary methods (besides the homotopy lifting
techniques, which are borrowed from a paper by Negron and Witherspoon and essentially remain
a black box. All the compatibility conditions can be translated into commutative diagrams, and
by filling them up we are essentially done).

It can be checked that if A and B are graded by the commutative groups F and G respectively,
then HH∗(−) is bigraded: HH∗,∗(−). In the context of the twisting by a bicharacter, we also
denote:

F ′ =
⋂
g∈G

ker(t(−, g)), G′ =
⋂
f∈F

ker(t(f,−)).

Theorem 10 (Grimley-Nguyen-Witherspoon 2017, OOW). As Gerstenhaber algebras (in the
twisted tensor product setup, and assuming the necessary finiteness conditions, we have):

HH∗,F
′⊕G′

(A⊗t B) ∼= HH∗,F
′
(A)⊗HH∗,G

′
(B).

Proof. (The original proof used extended versions of the Alexander-Whitney and Eilenberg-Zilber
maps. We completely avoided them by using) Volkov’s homotopy lifting (techniques, as well as
a chain isomorphism similar to the aforementioned σ, and a bit of work with the Koszul sign
convention).

4 Remarks and future work

1. We did not use the explicit formula for σ (at least not its full expression).

The original proofs required the explicit expression of σ because of the use of the Alexander-
Whitney and Eilenberg-Zilber maps, but we only used that σ makes some diagrams com-
mute. This should also hold for the version in [KMOOW], and is current work in progress.

2. Compute more examples.

New examples and complete computations are always useful, the current examples are
relatively small and relatively scarce.

4



3. Understand why some examples (like the Jordan plane) work: k〈x, y〉/(yx− xy − x2).

The complete Gerstenhaber algebra structure of the Jordan plane was first computed by
Lopes and Solotar, using spectral sequences and a lot of machinery. In [KMOOW] we also
computed it using more elementary and completely different methods; and although the
hypothesis that we required on the twisting map were not satisfied, using these elementary
techniques the conclusions of our main results held. That is, applying our constructions,
we were still able to compute the complete Gerstenhaber algebra structure. What are then
the correct hypothesis on the twist?

Thank you for your time!
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