Hochschild Cohomology of Twisted Tensor Product Algebras

Pablo S. Ocal

Texas A&M University and Mathematical Sciences Research Institute

April 11-12, 2020

Setup

Definition

The Hochschild cohomology of a k algebra A is $HH^*(A) = \operatorname{Ext}_{A^e}^*(A, A)$.

Definition (Čap, Schichl, Vanžura)

The twisted tensor product $A \otimes_{\tau} B$ of A and B via $\tau : B \otimes A \longrightarrow A \otimes B$ is $A \otimes B$ with multiplication $m_{\tau} = (m_A \otimes m_B) \circ (1 \otimes \tau \otimes 1)$.

Goal

Understand $HH^*(A \otimes_{\tau} B)$ in terms of $HH^*(A)$ and $HH^*(B)$.

Ideas

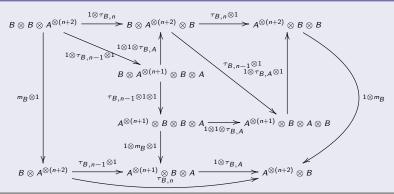
Goal

Understand $HH^*(A \otimes_{\tau} B)$ in terms of $HH^*(A)$ and $HH^*(B)$.

- 1. Given a resolution of A as A^e module, and a resolution of B as B^e module, we compute a resolution of $A \otimes_{\tau} B$ as $(A \otimes_{\tau} B)^e$ module.
- 2. We will need these resolutions to be *compatible* with τ . (Shepler, Witherspoon)

Techniques

Fancy diagram chasing



Homotopy lifting

Requires a resolution, a diagonal map, and a cocycle.

Results

Applications (Grimley, Negron, Nguyen, Shirikov, Witherspoon)

For some $q \in k^*$, $k \langle x, y \rangle / (x^2, y^2, xy + qyx)$, and $k \langle x, y \rangle / (xy - yx - y^2)$.

Twisting by a bicharacter: $A \otimes_{\tau} B = A \otimes^{t} B$

Let A, B be k-algebras graded by the commutative groups F, G respectively, let $t: F \otimes_{\mathbb{Z}} G \to k^{\times}$ be a bicharacter. Then $\tau(b \otimes a) = t(|a|, |b|)a \otimes b$ is a twisting map. Then (GNW, OOW):

$$HH^{*,F'\oplus G'}(A\otimes^t B)\cong HH^{*,F'}(A)\otimes HH^{*,G'}(B).$$