Toward Free Resolutions Over Scrolls

Aleksandra Sobieska - joint with Laura Matusevich
October 24, 2019
Texas A\&M University

Minimal Free Resolutions

The Minimal Free Resolution

For a commutative (graded) local ring (R, \mathfrak{m}) and an R-module M, the minimal free resolution of M over R is the complex

$$
\mathcal{F}_{\bullet}: \cdots \rightarrow F_{i} \xrightarrow{\partial_{i}} F_{i-1} \rightarrow \cdots \xrightarrow{\partial_{3}} F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \rightarrow M \rightarrow 0
$$

where

- the sequence is exact, i.e. $\operatorname{Im}\left(\partial_{k}\right)=\operatorname{ker}\left(\partial_{k-1}\right)$
- each of the F_{k} is a finitely generated free R-module, that is, $F_{k} \cong R^{\beta_{k}}$ for some β_{k}
- $\partial_{k}\left(F_{k}\right) \subseteq \mathfrak{m} F_{k-1}$ (essentially, this makes the β_{k} as small as possible)

We call the β_{k} the Betti numbers of M, sometimes written $\beta_{k}^{R}(M)$.

Finite vs. Infinite Case

Important results over the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ include:

Hilbert's Syzygy Theorem [Hilbert, 1890]

If M is a finitely generated module over S, then there exists a free resolution of M that has $F_{i}=0$ for $i>n$.

Resolution Recipes

There are many recipes for combinatorial resolutions over S.
For a general ring R, we have no such luck.

- Failure of Hilbert's Syzygy Theorem means that our resolution might not terminate.
- Our resolution recipes don't usually work either.

In general, infinite free resolutions are not well understood.
Question: For a special enough R, can we cobble something together?

Toric Rings

Write $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{N}^{d}$ (and sometimes for the $d \times n$ matrix with columns a_{i}), where $d \leq n$ and rank $\mathcal{A}=d$. Define the map

$$
\begin{aligned}
\varphi: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] & \rightarrow \mathbb{k}\left[t_{1}, \ldots, t_{d}\right] \\
x_{i} & \mapsto \mathfrak{t}^{a_{i}}=t_{1}^{a_{i, 1}} \cdots t_{d}^{a_{i, d}}
\end{aligned}
$$

So for monomials $\mathrm{x}^{u}, \varphi\left(\mathrm{x}^{u}\right)=\mathrm{t}^{\mathcal{A} u}$.

Toric Ideal

The kernel $I_{\mathcal{A}}$ of φ is a prime binomial ideal called the toric ideal associated to \mathcal{A}. The ideal can be written $I_{\mathcal{A}}=\left\langle\mathbf{x}^{u}-\mathbf{x}^{\vee} \mid \mathcal{A} u=\mathcal{A} v\right\rangle$.

Toric Ring

The toric ring associated to \mathcal{A} is

$$
R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] / I_{\mathcal{A}} \cong \mathbb{k}\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{n}}\right] .
$$

Toric Rings

Example

The usual polynomial ring is a special example of a toric ring when $\mathcal{A}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq \mathbb{N}^{n}$.

Example

$$
\begin{gathered}
\text { If } \mathcal{A}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} \subseteq \mathbb{N}^{2}, \text { then }\left\{\begin{array}{lll}
x_{1} & \mapsto & t_{1} \\
x_{2} & \mapsto & t_{1} t_{2} \\
x_{3} & \mapsto & t_{1} t_{2}^{2}
\end{array}\right\} \text { and } \\
R=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle x_{1} x_{3}-x_{2}^{2}\right\rangle \cong \mathbb{k}\left[t_{1}, t_{1} t_{2}, t_{1} t_{2}^{2}\right] .
\end{gathered}
$$

Question: For a speciat enough toric ring R, can we cobble something together? (Where "cobble something together" means explicitly describe any/a minimal free resolution over R.)

Rational Normal k-SCROLLS

The toric rings we will consider are those tied to rational normal k-scrolls.

Rational Normal k-Scroll

The rational normal k-scroll $\mathcal{S}\left(m_{1}-1, m_{2}-1, \ldots, m_{k}-1\right)$ is the variety in \mathbb{P}^{n-1} defined by the ideal $I_{2}(M)$ of 2×2 minors of the $2 \times(n-k)$ matrix $M=$
$\left[\begin{array}{cccc|ccc|c|ccc}x_{1,1} & x_{1,2} & \ldots & x_{1, m_{1}-1} & x_{2,1} & \ldots & x_{2, m_{2}-1} & \ldots & x_{k, 1} & \ldots & x_{k, m_{k}-1} \\ x_{1,2} & x_{1,3} & \ldots & x_{1, m_{1}} & x_{2,2} & \ldots & x_{2, m_{2}} & \ldots . & x_{k, 2} & \ldots & x_{k, m_{k}}\end{array}\right]$, where $\sum_{i=1}^{k} m_{i}=n$.

Rational Normal k-SCROLLS

One can show that $I_{2}(M)$ defining $\mathcal{S}\left(m_{1}-1, \ldots, m_{k}-1\right)$ is in fact the toric ideal associated to
$\mathcal{A}=\left[\begin{array}{cccc|cccc|cccccc}1 & \ldots & \ldots & 1 & 0 & \ldots & \ldots & 0 & \ldots \ldots & 0 & \ldots & \ldots & 0 \\ 0 & \ldots & \ldots & 0 & 1 & \ldots & \ldots & 1 & 0 & \ldots & 0 & \ldots & \ldots & 0 \\ \vdots & & & \vdots & & & & & & & \vdots & & & \vdots \\ 0 & \ldots & \ldots & 0 & 0 & \ldots & \ldots & 0 & \ldots & 0 & 1 & \ldots & \ldots & 1 \\ 0 & 1 & \ldots & m_{1}-1 & 0 & 1 & \ldots & m_{2}-1 & \ldots \ldots & 0 & 1 & \ldots & m_{k}-1\end{array}\right]$,
so $R=S / I_{2}(M)$ has a wealth of combinatorial structure.
GOAL
Our goal from here on out is to resolve the ground field \mathbb{k} over R.

Rational Normal Curves

When $k=1$, we call $\mathcal{S}(n-1)$ the rational normal curve, a curve in \mathbb{P}^{n-1}. In this case,

$$
M=\left[\begin{array}{rrrr}
x_{1} & x_{2} & \ldots & x_{n-1} \\
x_{2} & x_{3} & \ldots & x_{n}
\end{array}\right] .
$$

Betti numbers of \mathbb{k} [Peeva-Reiner-Sturmfels (1998), [2]]

The Betti numbers of \mathbb{k} are

$$
\beta_{i}^{R}(\mathbb{k})= \begin{cases}1 & \text { for } i=0 \\ n & \text { for } i=1 \\ (n-1)^{2}(n-2)^{i-2} & \text { for } i \geq 2\end{cases}
$$

Resolution of Monomial Ideals over Rational Normal Curves [Gasharov-Horwitz-Peeva (2008), [1]]
Gives (explicitly) the minimal free resolution over R of the field \mathbb{k}.

Betti Numbers of Rational Normal k-SCrolls

Betti Numbers of \mathbb{k} [Matusevich-S (2019)]

Let $I_{2}(M)$ define the rational normal k-scroll $\mathcal{S}\left(m_{1}-1, \ldots, m_{k}-1\right)$. If $R=S / I_{2}(M)$, then

$$
\beta_{i}^{R}(\mathbb{k})=\sum_{j=0}^{i}\binom{k+1}{j}(n-k-1)^{i-j} .
$$

In particular, for $r \geq 1, \beta_{k+r}^{R}(\mathbb{k})=(n-k)^{k+1}(n-k-1)^{r-1}$.

The Minimal Free Resolution of Rational Normal 2-Scrolls

Resolution of \mathbb{k} over 2-Scrolls [Matusevich-S (2019)]

Gives (explicitly) the minimal free resolution over R of the field \mathbb{k}.

Example for $\mathcal{S}(2,1)$

$$
M=\left[\begin{array}{ll|l}
x_{1} & x_{2} & x_{4} \\
x_{2} & x_{3} & x_{5}
\end{array}\right] \text { so } I_{2}(M)=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{1} x_{5}-x_{2} x_{4}, x_{2} x_{5}-x_{3} x_{4}\right\rangle
$$

	x_2	x_3	$\times 15$	x_4	e	0	O	0	θ	0	0	0	0	0	0	Q	0	θ	x_4	θ	0	0	0	θ	0	0	0
	-x_1	-x_2	-x_4	θ	x_4	x_5	θ	0	θ	0	0	\bigcirc	θ	x_4	0	θ	θ	θ	0	0	θ						
	e	0	e	-x_1	-x_2	-x_3	e	0	e	0	e	0	0	0	0	0	0	\bigcirc	0	θ	x_4	θ	-	0	0	0	0
	6	θ	6	θ	0	0	$\times 2$	x_3	x_5	x -4	0	0	0	0	0	0	0	0	0	0	0	x.4	Q	0	0	\bigcirc	θ
	θ	θ	0	0	0	θ	-x_1	-x_2	-x_4	0	x_4	x_5	0	0	θ	θ	0	θ	θ	0	0	θ	x_4	θ	θ	θ	θ
	θ	0	θ	0	6	0	e	0	8	-x_1	-x_2	-x_3	0	0	θ	0	0	0	θ	0	0	0	0	x_4	0	0	0
	0	θ	0	0	e	0	0	θ	O	0	e	0	x_2	x_3	x_5	x-4	0	0	0	θ	0	θ	0	0	-x_3	0	0
	0	0	0	θ	0	0	θ	0	θ	0	0	θ	-x_1	-x_2	-x_4	0	x_4	x_5	0	θ	0	θ	0	0	0	-x_3	0
	e	0	0	0	6	0	0	0	e	0	e	0	0	0	0	-x_1	-x_2	-x_3	0	θ	0	θ	0	0	0	0	-x_3
	0	θ	e	0	e	0	0	0	0	0	θ	θ	θ	0	0	0	0	\bigcirc	$-x_{\sim}^{2}$	-x_3	-x_5	θ	0	θ	0	θ	θ
	θ	0	\bigcirc	0	6	0	θ	0	θ	0	0	0	0	0	0	0	0	0	x_1	x_2	x-4	$-\mathrm{x} _2$	-x_3	-x_5	0	0	θ
	e	0	e	0	6	0	0	0	e	0	e	0	0	0	-	\bigcirc	0	0	θ	\bigcirc	0	x_1	$\mathrm{x}_{2}{ }^{2}$	x_4	-x_2	-x_3	-x_5
$O_{3}=$	e	\bigcirc	0	0	θ	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	θ	\bigcirc	0	\bigcirc	θ	\bigcirc	0	x_1	x - 2	x_4

Thank you!

References

三
V. Gasharov, N. Horwitz, and I. Peeva.

Hilbert functions over toric rings.
Michigan Math. J., 57:339-357, 2008.
Special volume in honor of Melvin Hochster.
R. I. Peeva, V. Reiner, and B. Sturmfels.

How to shell a monoid.
Math. Ann., 310(2):379-393, 1998.

Mapping Cone Technique

Mapping Cone for $\mathcal{S}(2,1)$

$$
M=\left[\begin{array}{ll|l}
x_{1} & x_{2} & x_{4} \\
x_{2} & x_{3} & x_{5}
\end{array}\right] \text { and } \mathcal{A}=\left[\begin{array}{lll|ll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 1
\end{array}\right]
$$

Start with the short exact sequence:

$$
0 \rightarrow\left\langle x_{1}, x_{2}, x_{3}\right\rangle \cap\left\langle x_{4}, x_{5}\right\rangle \rightarrow\left\langle x_{1}, x_{2}, x_{3}\right\rangle \oplus\left\langle x_{4}, x_{5}\right\rangle \rightarrow\left\langle x_{1}, \ldots, x_{5}\right\rangle \rightarrow 0
$$

Make resolutions of the first two, lift chain map to a resolution of the third.

PROOF IDEA

R is a Koszul algebra
$\Rightarrow P_{R}(t)=1 / H(R ;-t)=1 / H\left(S /\right.$ in $\left.\left._{\prec}\right|_{\mathcal{A}} ;-t\right)$

Figure 1: Stanley-Reisner complex for $\mathcal{S}(3,2)$

$$
\mathcal{A}=\left[\begin{array}{llll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 0 & 1 & 2
\end{array}\right] \text { and } M=\left[\begin{array}{lll|ll}
x_{1} & x_{2} & x_{3} & x_{5} & x_{6} \\
x_{2} & x_{3} & x_{4} & x_{6} & x_{7}
\end{array}\right]
$$

Here in ${ }_{\prec} \mathcal{I}_{\mathcal{A}}=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{6}, x_{1} x_{7}, x_{2} x_{4}, x_{2} x_{6}, x_{2} x_{7}, x_{3} x_{6}, x_{3} x_{7}, x_{5} x_{7}\right\rangle$.

Resolution for $\mathcal{S}(2,2)$

Resolution for $\mathcal{S}(2,2)$

$$
\begin{aligned}
& \varphi_{0}=\left[\begin{array}{rr|rr}
x_{2} & x_{3} & x_{5} & x_{6} \\
-x_{1} & -x_{2} & -x_{4} & -x_{5}
\end{array}\right] \\
& \varphi_{1}=\left[\begin{array}{rrrr|rrrr|rrrr}
x_{2} & x_{3} & x_{5} & x_{6} & x_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-x_{1} & -x_{2} & -x_{4} & -x_{5} & 0 & x_{4} & x_{5} & x_{6} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & -x_{1} & -x_{2} & -x_{3} & 0 & x_{2} & x_{3} & x_{5} & x_{6} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -x_{3} & -x_{1} & -x_{2} & -x_{4} & -x_{5}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{i}=\varphi_{i-1} \oplus \varphi_{i-2}^{\oplus 3} \oplus \varphi_{i-1}
\end{aligned}
$$

