Max Intersection Complete Codes and the Factor Complex Alexander Ruys de Perez (joint with Anne Shiu and Laura Matusevich)

Fall 2019 Graduate Algebra Symposium October 19, 2019

Outline

Outline:

- Background and Main Result
- The Factor Complex
- Three World Correspondence

Outline

Outline:

- Background and Main Result
- The Factor Complex
- Three World Correspondence

Notation:

- [n] refers to $\{1,2, \ldots, n\}$.
- For $\sigma \subseteq[n]$, let

$$
\bar{\sigma}:=\{\bar{i} \mid i \in \sigma\}
$$

(e.g. $\overline{[n]}=\{\overline{1}, \overline{2}, \ldots, \bar{n}\}$).

- Correspondence between monomials and subsets of $[n] \cap \overline{[n]}$ as follows:

$$
\prod_{i \in \sigma} x_{i} \prod_{j \in \tau} y_{j} \leftrightarrow \sigma \cup \bar{\tau}
$$

(e.g. $x_{1} x_{2} x_{3} y_{2} y_{4} \leftrightarrow\{1,2,3, \overline{2}, \overline{4}\}$).

Background

Definition

- A neural code \mathcal{C} on n neurons is a collection of subsets of [n].
- A collection $\mathcal{U}=\left\{U_{i}\right\}_{i=1}^{n}$ of open subsets of \mathbb{R}^{d} is a realization of \mathcal{C} if for all $\sigma \subseteq[n]$, we have

$$
\bigcap_{i \in \sigma} U_{i} \backslash \bigcup_{j \notin \sigma} U_{j} \neq \emptyset \Leftrightarrow \sigma \in C
$$

- \mathcal{C} is convex if there exists a realization \mathcal{U} of \mathcal{C} such that every $U_{i} \in \mathcal{U}$ is convex.

Background

Which neural codes are convex?

Definition

A code \mathcal{C} is max intersection complete if any arbitrary intersection of maximal codewords of \mathcal{C} is also in \mathcal{C}.

Theorem (Cruz, Giusti, Itskov, Kronholm, 2017)
Max intersection complete codes are convex.
Question (Curto, Gross, Jeffries, Morrison, Rosen, S, Youngs, 2018)
Is there an algebraic signature for max intersection completeness in the neural ideal?

Main Result

Definition

The neural ideal $J_{\mathcal{C}}$ of \mathcal{C} is

$$
J_{\mathcal{C}}:=\left\langle\left\{\prod_{i \in c} x_{i} \prod_{j \notin c}\left(1-x_{j}\right) \mid c \in 2^{[n]} \backslash \mathcal{C}\right\}\right\rangle
$$

Theorem (RdP, S, M)

\mathcal{C} is max intersection complete iff for every minimal pseudomonomial ϕ in $J_{\mathcal{C}}$, with ϕ not a monomial, there exists $i \in[n]$ such that
(i) $\left(1-x_{i}\right) \mid \phi$, and
(ii) every minimal prime of $I\left(\Delta(\mathcal{C})\right.$) that contains x_{i} also contains ϕ.

Polarization

Definition (Gunturkun, Jeffries, Sun, 2017)

The polarization of the pseudomonomial

$$
\phi=\prod_{i \in \sigma} x_{i} \prod_{j \in \tau}\left(1-x_{j}\right)
$$

is

$$
\mathcal{P}(\phi):=\prod_{i \in \sigma} x_{i} \prod_{j \in \tau} y_{j} .
$$

The polarization of the pseudomonomial ideal

$$
J=\left\langle\phi_{1}, \phi_{2} \ldots, \phi_{k}\right\rangle
$$

is

$$
\mathcal{P}(J):=\left\langle\mathcal{P}\left(\phi_{1}\right), \mathcal{P}\left(\phi_{2}\right), \ldots, \mathcal{P}\left(\phi_{k}\right)\right\rangle .
$$

The Factor Complex

To get the factor complex $\Delta_{\cap}(\mathcal{C})$ of a code \mathcal{C} :

- Take the neural ideal $J_{\mathcal{C}}$
- Take the minimal primes $P_{1}, P_{2}, \ldots, P_{l}$ of $J_{\mathcal{C}}$
- Polarize each minimal prime, and then consider the ideal

$$
\mathcal{P}_{\cap}\left(J_{\mathcal{C}}\right):=\bigcap_{t=1}^{\prime} \mathcal{P}\left(P_{t}\right) .
$$

- Then $\Delta_{\cap}(\mathcal{C})$ is the simplicial complex for which $\mathcal{P}_{\cap}\left(J_{\mathcal{C}}\right)$ is the Stanley-Reisner ideal. That is,

$$
\Delta_{\cap}(\mathcal{C}):=\left\{\sigma \cup \bar{\tau} \mid \prod_{i \in \sigma} x_{i} \prod_{j \in \tau} y_{j} \notin \mathcal{P}_{\cap}\left(J_{\mathcal{C}}\right)\right\}
$$

More Definitions

Definition

- The complement code of \mathcal{C} on n neurons is $\mathcal{C}^{\prime}:=2^{[n]} \backslash \mathcal{C}$.
- $c, d \subseteq[n]$ with $c \subseteq d$. Their interval is
$[c, d]:=\{w \subseteq[n] \mid c \subseteq w \subseteq d\}$
- Δ a simplicial complex on $[n] \cup \overline{[n]} . B \subseteq\{\overline{1}, \overline{2}, \ldots, \bar{n}\}$ is a prime set of Δ if $F \in \Delta, F \supseteq[n] \Rightarrow B \nsubseteq F$.

Example: Let Δ be a simplicial complex on $\{1,2,3,4,5, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ with facets

- $\{1,2,3,4,5, \overline{1}, \overline{2}, \overline{3}\}$,
- $\{1,2,3,4,5, \overline{2}, \overline{3}, \overline{5}\}$, and
- $\{1,2,3,4, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$.

Then the minimal prime sets of Δ are $\{\overline{4}\}$ and $\{\overline{1}, \overline{5}\}$.

Threefold Correspondence, Part I

Information about what codewords are contained in \mathcal{C} lies in each of the following:
(1) intervals of \mathcal{C},
(2) effective faces of $\Delta_{\cap}(\mathcal{C})$, and
(3) pseudomonomials of $J_{\mathcal{C}^{\prime}}$.

Theorem (Curto, Itskov, Veliz-Cuba, Youngs, 2013; Gunturkun, Jeffries, Sun, 2017; RdP, S, M)

The following are equivalent:
(1) $[c, d] \subseteq \mathcal{C}$
(2) $d \cup \overline{[n] \backslash c} \in \Delta_{\cap}(\mathcal{C})$
(3) $\prod_{i \in c} x_{i} \prod_{j \in[n] \backslash d}\left(1-x_{j}\right) \in J_{\mathcal{C}^{\prime}}$.

Threefold Correspondence, Part II

Information about what codewords are maximal lies in each of the following:
(1) max codewords of \mathcal{C},
(2) minimal prime sets of $\Delta_{\cap}\left(\mathcal{C}^{\prime}\right)$, and
(3) minimal primes of $I(\Delta(\mathcal{C}))$.

Theorem (RdP, S, M)

The following are equivalent:
(1) c maximal in \mathcal{C}
(2) $\overline{[n] \backslash c}$ is a minimal prime set of $\Delta_{\cap}\left(\mathcal{C}^{\prime}\right)$.
(3) $\left\langle\left\{x_{i} \mid i \in[n] \backslash c\right\}\right\rangle$ is a minimal prime of $J_{\mathcal{C}}$.

Max \cap-Completeness in the Factor Complex

Theorem (RdP, S, M)

\mathcal{C} is max intersection complete iff for every facet F of $\Delta_{\cap}\left(\mathcal{C}^{\prime}\right)$ that does not contain [n], there exists $i \in[n]$ such that
(i) $i \notin F$, and
(ii) every minimal prime set of $\Delta_{\cap}\left(C^{\prime}\right)$ that contains \bar{i} also contains some \bar{j} such that $\bar{j} \notin F$.

Theorem (Main Result)

\mathcal{C} is max intersection complete iff for every minimal pseudomonomial ϕ in $J_{\mathcal{C}}$, with ϕ not a monomial, there exists $i \in[n]$ such that
(i) $\left(1-x_{i}\right) \mid \phi$, and
(ii) every minimal prime of $I(\Delta(\mathcal{C}))$ that contains x_{i} also contains ϕ.

Thank You

Thanks for listening!

