Max Intersection Complete Codes and the Factor Complex Alexander Ruys de Perez (joint with Anne Shiu and Laura Matusevich)

> Fall 2019 Graduate Algebra Symposium October 19, 2019

Outline

Outline:

- Background and Main Result
- ► The Factor Complex
- ► Three World Correspondence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Outline:

- Background and Main Result
- ► The Factor Complex
- ► Three World Correspondence

Notation:

▶ [n] refers to $\{1, 2, ..., n\}$. ▶ For $\sigma \subseteq [n]$, let $\bar{\sigma} := \{\bar{i} \mid i \in \sigma\}$

(e.g. $[n] = \{\overline{1}, \overline{2}, \dots, \overline{n}\}).$

► Correspondence between monomials and subsets of [n] ∩ [n] as follows:

$$\prod_{i\in\sigma} x_i \prod_{j\in\tau} y_j \leftrightarrow \sigma \cup \overline{\tau}$$

(e.g. $x_1x_2x_3y_2y_4 \leftrightarrow \{1, 2, 3, \overline{2}, \overline{4}\}$).

Definition

- A neural code C on n neurons is a collection of subsets of [n].
- A collection U = {U_i}ⁿ_{i=1} of open subsets of ℝ^d is a *realization* of C if for all σ ⊆ [n], we have

$$\bigcap_{i\in\sigma}U_i\smallsetminus\bigcup_{j\notin\sigma}U_j\neq\emptyset\Leftrightarrow\sigma\in C.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

C is convex if there exists a realization U of C such that every U_i ∈ U is convex. Which neural codes are convex?

Definition

A code C is *max intersection complete* if any arbitrary intersection of maximal codewords of C is also in C.

Theorem (Cruz, Giusti, Itskov, Kronholm, 2017)

Max intersection complete codes are convex.

Question (Curto, Gross, Jeffries, Morrison, Rosen, S, Youngs, 2018)

Is there an algebraic signature for max intersection completeness in the neural ideal?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The *neural ideal* $J_{\mathcal{C}}$ of \mathcal{C} is

$$J_{\mathcal{C}} := \langle \{\prod_{i \in c} x_i \prod_{j \notin c} (1 - x_j) \mid c \in 2^{[n]} \smallsetminus \mathcal{C} \} \rangle$$

Theorem (RdP, S, M)

C is max intersection complete iff for every minimal pseudomonomial ϕ in J_c , with ϕ not a monomial, there exists $i \in [n]$ such that

(i) $(1 - x_i) | \phi$, and

(ii) every minimal prime of $I(\Delta(C))$ that contains x_i also contains ϕ .

Definition (Gunturkun, Jeffries, Sun, 2017)

The polarization of the pseudomonomial

$$\phi = \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1 - x_j)$$

is

$$\mathcal{P}(\phi) := \prod_{i \in \sigma} x_i \prod_{j \in \tau} y_j.$$

The *polarization* of the pseudomonomial ideal

$$J = \langle \phi_1, \phi_2 \dots, \phi_k \rangle$$

is

$$\mathcal{P}(J) := \langle \mathcal{P}(\phi_1), \mathcal{P}(\phi_2), \dots, \mathcal{P}(\phi_k) \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To get the *factor complex* $\Delta_{\cap}(\mathcal{C})$ of a code \mathcal{C} :

- ▶ Take the *neural ideal* J_C
- ▶ Take the minimal primes $P_1, P_2, ..., P_l$ of J_C
- ▶ Polarize each minimal prime, and then consider the ideal

$$\mathcal{P}_{\cap}(J_{\mathcal{C}}) := \bigcap_{t=1}^{l} \mathcal{P}(P_t).$$

Then Δ_∩(C) is the simplicial complex for which P_∩(J_C) is the Stanley-Reisner ideal. That is,

$$\Delta_{\cap}(\mathcal{C}) := \{ \sigma \cup \overline{\tau} \mid \prod_{i \in \sigma} x_i \prod_{j \in \tau} y_j
ot \in \mathcal{P}_{\cap}(J_{\mathcal{C}}) \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

• The *complement code* of C on *n* neurons is $C' := 2^{[n]} \setminus C$.

▶
$$c, d \subseteq [n]$$
 with $c \subseteq d$. Their *interval* is $[c, d] := \{w \subseteq [n] \mid c \subseteq w \subseteq d\}$

▶ Δ a simplicial complex on $[n] \cup \overline{[n]}$. $B \subseteq \{\overline{1}, \overline{2}, \dots, \overline{n}\}$ is a *prime set* of Δ if $F \in \Delta$, $F \supseteq [n] \Rightarrow B \nsubseteq F$.

Example: Let Δ be a simplicial complex on $\{1, 2, 3, 4, 5, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ with facets

{1,2,3,4,5,1,2,3},
{1,2,3,4,5,2,3,5}, and
{1,2,3,4,2,3,4,5}.

Then the minimal prime sets of Δ are $\{\overline{4}\}$ and $\{\overline{1},\overline{5}\}$.

Information about what codewords are contained in ${\mathcal C}$ lies in each of the following:

- (1) intervals of C,
- (2) effective faces of $\Delta_{\cap}(\mathcal{C})$, and
- (3) pseudomonomials of $J_{C'}$.

Theorem (Curto, Itskov, Veliz-Cuba, Youngs, 2013; Gunturkun, Jeffries, Sun, 2017; RdP, S, M)

The following are equivalent:

(1)
$$[c, d] \subseteq C$$

(2) $d \cup \overline{[n] \setminus c} \in \Delta_{\cap}(C)$
(3) $\prod_{i \in c} x_i \prod_{j \in [n] \setminus d} (1 - x_j) \in J_{C'}$

Information about what codewords are maximal lies in each of the following:

- (1) max codewords of \mathcal{C} ,
- (2) minimal prime sets of $\Delta_{\cap}(\mathcal{C}')$, and
- (3) minimal primes of $I(\Delta(\mathcal{C}))$.

Theorem (RdP, S, M)

The following are equivalent:

- (1) c maximal in C
- (2) $\overline{[n] \setminus c}$ is a minimal prime set of $\Delta_{\cap}(\mathcal{C}')$.
- (3) $\langle \{x_i \mid i \in [n] \smallsetminus c\} \rangle$ is a minimal prime of J_C .

Theorem (RdP, S, M)

C is max intersection complete iff for every facet *F* of $\Delta_{\cap}(C')$ that does <u>not</u> contain [n], there exists $i \in [n]$ such that

- (i) $i \notin F$, and
- (ii) every minimal prime set of $\Delta_{\cap}(C')$ that contains \overline{i} also contains some \overline{j} such that $\overline{j} \notin F$.

Theorem (Main Result)

C is max intersection complete iff for every minimal pseudomonomial ϕ in J_C , with ϕ <u>not</u> a monomial, there exists $i \in [n]$ such that

- (i) $(1 x_i) | \phi$, and
- (ii) every minimal prime of
 I(Δ(C)) that contains x_i also contains φ.

Thanks for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>