Resolutions for truncated Ore extensions

Dustin McPhate

Department of Mathematics
Texas A\&M University

Graduate Algebra Symposium 2019
Texas A\&M University

Twisted Tensor Products

Let \mathbb{k} be a field and A, B unital associative \mathbb{k} algebras with multiplication maps m_{A} and m_{B}.

Definition (Twisting Map)

A twisting map, τ is a bijective \mathbb{k}-linear map

$$
\tau: B \otimes A \rightarrow A \otimes B
$$

for which $\tau\left(1_{B} \otimes a\right)=a \otimes 1_{B}, \tau\left(b \otimes 1_{A}\right)=1_{A} \otimes b$, and

$$
\tau \circ\left(m_{B} \otimes m_{A}\right)=\left(m_{A} \otimes m_{B}\right) \circ(1 \otimes \tau \otimes 1) \circ(\tau \otimes \tau) \circ(1 \otimes \tau \otimes 1)
$$

Twisted Tensor Products

Definition (Twisted Tensor Product)

The twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes_{\mathbb{k}} B$ with multiplication given by the map $\left(m_{A} \otimes m_{B}\right) \circ(1 \otimes \tau \otimes 1)$ on $A \otimes B \otimes A \otimes B$.

Example (Quantum Plane)

$$
\mathbb{k}\langle x, y\rangle /(x y-q y x)
$$

where $q \in \mathbb{k}$ and $q \neq 0$. Letting $A=\mathbb{k}\langle x\rangle$ and $B=\mathbb{k}\langle y\rangle$ with

$$
\tau(y \otimes x)=q^{-1} x \otimes y
$$

then $\mathbb{k}\langle x, y\rangle /(x y-q y x) \cong A \otimes_{\tau} B$

Modules

Definition (Compatability)

A left A-module M is said to be compatible with τ if \exists a bijective \mathbb{k}-linear map

$$
\tau_{B, M}: B \otimes M \rightarrow M \otimes B
$$

which commutes with the module structure of M and multiplication in B

Resolutions

Let M be a left A-module compatible with a twisting map τ via some $\tau_{B, M}$. Let $P .(M)$ be a projective resolution of M as an A-module.

Definition

The resolution $P_{.}(M)$ is said to be compatible with τ if each $P_{i}(M)$ is compatible with τ via a bijective \mathbb{k}-linear map

$$
\tau_{B, i}: B \otimes P_{i}(M) \rightarrow P_{i}(M) \otimes B
$$

with $\tau_{B,}$, lifting $\tau_{B, M}$.

Ore Extensions

Let A be a unital associative \mathbb{k}-algebra, $\sigma \in \operatorname{Aut}_{\mathbb{k}}(A)$, and δ be a σ-derivation. That is $\delta\left(a a^{\prime}\right)=\sigma(a) \delta\left(a^{\prime}\right)+\delta(a) a^{\prime}$.

Definition (Ore extension)

The Ore extension $A[x ; \sigma, \delta]$ is the associative algebra with underlying vector space $A[x]$ and multiplication determined by that of A an $\mathbb{k}[x]$ with the additional Ore relation

$$
x a=\sigma(a) x+\delta(a)
$$

Example (Quantum Plane)

$$
\mathbb{k}\langle x, y\rangle /(x y-q y x)
$$

where $q \in \mathbb{k}$ and $q \neq 0$. Letting $A=\mathbb{k}[x], \sigma(x)=q^{-1} x$ and $\delta=0$ then

$$
\mathbb{k}\langle x, y\rangle /(x y-q y x) \cong A[y ; \sigma, \delta]
$$

More Examples

Example (first Weyl Algebra)

The first Weyl Algebra \mathcal{W} is defined as

$$
\mathcal{W}:=\mathbb{k}\langle x, y\rangle /(x y-y x-1)
$$

Letting $A=\mathbb{k}[x], \sigma=i d_{A}$ and δ be formal differentiation of polynomials. Then $\mathcal{W} \cong A[y ; \sigma, \delta]$

Example (Universal Enveloping Algebras)

Let \mathfrak{g} be a Lie algebra. The universal enveloping algebra of \mathfrak{g} is defined as the algebra with underlying vector space \mathfrak{g} and multiplication defined by the Ore relation on generators

$$
u v=v u+[u, v]
$$

Truncated Ore Extensions

Let A be an associative \mathbb{k}-algebra, $\sigma \in \operatorname{Aut}_{\mathbb{k}}(A)$, and δ be a σ-derivation.

Definition

The truncated Ore extension $A[\bar{x} ; \sigma, \delta]$, is the associative algebra with underlying vector space $A[x] /\left(x^{n}\right)$ and multiplication determined by that of A and $\mathbb{k}[x] /\left(x^{n}\right)$ with the additional Ore relation

$$
\bar{x} a=\sigma(a) \bar{x}+\delta(a)
$$

Example (Nichols Algebra)

$$
\mathfrak{B}\left(V_{0}\right)=\mathbb{k}[x, y] /\left(x^{2}, y^{2}, x y+y x\right)
$$

Letting $A=\mathbb{k}[x] /\left(x^{2}\right), \sigma(x)=-x$, and $\delta=0$ then for $n=2$

$$
\mathfrak{B}\left(V_{0}\right) \cong A[\bar{y} ; \sigma, \delta] .
$$

Multiplication in Truncated Ore Extensions

We introduce some notation. Let $s_{\left(i_{1}, i_{2}, \ldots, i_{k}\right)}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be the polynomial in k noncommuting variables which is the sum of all possible products of i_{1} copies of x_{1}, i_{2} copies of x_{2}, \ldots, and i_{k} copies of x_{k}

Example

$\mathbf{s}_{(1,2)}(x, y)=x y^{2}+y x y+y^{2} x$

Proposition

Let τ be a twisting map for the Ore extension $A[x ; \sigma, \delta]$. If σ and δ satisfy the following conditions

$$
s_{(i, j)}(\sigma, \delta)=0
$$

for $i+j=n, 0 \leq i \leq n-1,1 \leq j \leq n$ then τ induces a well defined multiplication on the quotient $A[\bar{x} ; \sigma, \delta]$.

Compatibility with τ

Let A be any associative algebra and $B=\mathbb{k}[x] /\left(x^{n}\right)$. Suppose τ is a twisting map for $A[x ; \sigma, \delta]$ and induces a well defined multiplication on $A \otimes_{\tau} B \cong A[\bar{x} ; \sigma, \delta]$.

Let M be a left $A \otimes_{\tau} B$-module where upon restriction to an A-module \exists an A-module isomorphism

$$
\phi: M \rightarrow M^{\sigma}
$$

where M^{σ} is the vector space M with A-module action given by $a \cdot{ }_{\sigma} m=\sigma(a) \cdot m$.

Definition

Let $\tau_{B, M}: B \otimes M \rightarrow M \otimes B$ be the \mathbb{k}-linear map induced by

$$
\tau_{B, M}(\bar{x} \otimes m)=\phi(m) \otimes \bar{x}+\bar{x} \cdot m \otimes 1
$$

Compatibility with τ

Let $\tau, A[\bar{x} ; \sigma, \delta], M$, and $\tau_{B, M}$ be defined as in the previous slide.

Lemma

If the maps ϕ and \bar{x}. satisfy the following relations

$$
s_{(i, j)}(\phi, \bar{x} \cdot)=0
$$

for $i+j=n$ with $1 \leq i \leq n-1,1 \leq j \leq n-1$ then M is compatible with τ via $\tau_{B, M}$

Constructing τ_{B}.

Let M be a left $A[\bar{x} ; \sigma, \delta]$-module compatible with τ via $\tau_{B, M}$ and $P_{.}(M)$ be a projective resolution of M as an A-module. We then define $P .(M)^{\sigma}$ to be the vector spaces $P_{i}(M)$ with module action given by $a \cdot{ }_{\sigma} z=\sigma(a) \cdot z$ then set $d_{i}^{\sigma}=d_{i}$ for $i \neq 0$ and $d_{0}^{\sigma}=\phi^{-1} d_{0}$.

Remark

By the comparison theorem \exists an A-module chain map

$$
\sigma_{\bullet}: P_{\bullet}(M) \rightarrow P_{\bullet}(M)^{\sigma}
$$

lifting the identity on M.

Constructing τ_{B}.

Lemma

For any projective A-module, P, \exists an $A[\bar{x} ; \sigma, \delta]$-module structure on P that extends the action of A

Lemma

There exists a \mathbb{k}-linear chain map

$$
\delta_{\mathbf{0}}: P_{\mathbf{\bullet}}(M) \rightarrow P_{\mathbf{\bullet}}(M)
$$

which lifts the action of \bar{x} on M such that for every $i \geq 0, a \in A$, $z \in P_{i}(M)$

$$
\delta_{i}(a \cdot z)=\sigma(a) \delta_{i}(z)+\delta(a) z
$$

Constructing τ_{B}.

Definition

Let $\tau_{B, \bullet}: B \otimes P .(M) \rightarrow P .(M) \otimes B$ be the \mathbb{k}-linear chain map induced by

$$
\tau_{B, i}(\bar{x} \otimes z)=\sigma_{i}(z) \otimes \bar{x}+\delta_{i}(z) \otimes 1
$$

for all $z \in P_{i}(M)$.

Lemma

Let $\sigma_{.}$and δ. be the chain maps previously constructed. If σ. and δ. satisfy the relations

$$
s_{(i, j)}\left(\sigma_{\bullet}, \delta_{\bullet}\right)=0
$$

for $i+j=n$ with $0 \leq i \leq n-l$ and $1 \leq j \leq n$ then the resolution $P .(M)$ is compatible with the twisting map τ via $\tau_{B, .}$.

Constructing Resolutions

Let A be any associative algebra, $B=\mathbb{k}[x] /\left(x^{n}\right)$, and P. (B) be the standard projective resolution of \mathbb{k} as a module over B with augmentaion $\operatorname{map} \epsilon_{B}(\bar{x})=0$, i.e.

$$
\cdots \xrightarrow{\bar{x} \cdot} B \xrightarrow{\bar{x}^{n-1}} B \xrightarrow{\bar{x} \cdot} B \xrightarrow{\epsilon_{B}} \mathbb{k} \longrightarrow 0
$$

Let $A[\bar{x} ; \sigma, \delta]$ be a truncated Ore extension and M a left $A[\bar{x} ; \sigma, \delta]$-module for which $M \cong M^{\sigma}$ as A-modules and which is compatible with τ via $\tau_{B, M}$. Let $P .(M)$ be a projective resolution of M as an A-module which is compatible with τ via $\tau_{B, .}$.

Theorem

If $\sigma_{i}: P_{i}(M) \rightarrow P_{i}(M)$ is bijective for every $i \geq 0$ then the twisted product complex of $P .(M)$ and $P .(B)$ gives a projective resolution of M as a left $A[\bar{x} ; \sigma, \delta]$-module.

Example

Let \mathbb{k} be a field of prime characteristic $p, A=\mathbb{k}\left[x_{1}\right] /\left(x_{1}^{p}\right)$, and $B=\mathbb{k}\left[x_{2}\right] /\left(x_{2}^{p}\right)$. We consider the class of truncated Ore extensions of the form $A\left[\overline{x_{2}} ; \sigma, \delta\right] \cong A \otimes_{\tau} B$ where

$$
\tau\left(\overline{x_{2}} \otimes \overline{x_{1}}\right)=\sigma\left(\overline{x_{1}}\right) \otimes \overline{x_{2}}+\delta\left(\overline{x_{1}}\right) \otimes 1
$$

with

$$
\sigma=i d_{A}
$$

and δ is the σ-derivation defined by

$$
\delta(1)=0 \text { and } \delta\left(\overline{x_{1}}\right)=\alpha{\overline{x_{1}}}^{t}
$$

for $\alpha \in \mathbb{k}$ and $2 \leq t \leq p-1$

Example

Remark

Since $\sigma=i d_{A}$ then

$$
s_{(i, j)}(\sigma, \delta)=\binom{p}{j} \delta^{j}
$$

And since p is prime, $\operatorname{char}(\mathbb{k})=p$, and $\delta^{p}\left(\overline{x_{1}}\right)=0$ we have that

$$
s_{(i, j)}(\sigma, \delta)=0
$$

Remark

Also we note that for any $m \in \mathbb{k}$ we have that $\sigma(a) \cdot m=a \cdot m$ and thus \mathbb{k} is trivially isomorphic to \mathbb{k}^{σ}

Example

Definition

Letting $\phi=i d_{\mathbb{k}}$ and noting that $\overline{x_{1}}$ acts on \mathbb{k} as 0 we have

$$
\tau_{B, \mathrm{k}}(b \otimes m)=m \otimes b
$$

for all $b \in B$ and $m \in \mathbb{k}$
Let $P .(A)$ be the standard projective resolution of \mathbb{k} as an A-module.

Proposition

$P .(A)$ is compatible with τ via the maps
$\tau_{B, i}\left({\overline{x_{2}}}^{r} \otimes{\overline{x_{1}}}^{s}\right)=\left\{\begin{array}{l}\tau\left({\overline{x_{2}}}^{r} \otimes{\overline{x_{1}}}^{s}\right)=\sum_{j=0}^{r}\binom{r}{j}(s){ }^{[j]}\left(\alpha{\overline{x_{1}}}^{t}\right)^{j}{\overline{x_{1}}}^{s-j} \otimes{\overline{x_{2}}}^{r-j} \\ \sum_{j=0}^{r}\binom{r}{j}(s+1)^{[j]}\left(\alpha{\overline{x_{1}}}^{t}\right)^{j}{\overline{x_{1}}}^{s-j} \otimes{\overline{x_{2}}}^{r-j}\end{array}\right.$
where $(s)^{[j]}=\prod_{i=0}^{j-1}(s+i(t-1)),(s)^{[0]}=1$

Example

Let $P .(B)$ be the standard projective resolution of \mathbb{k} as a B-module.

Proposition

$P_{i}(A) \otimes P_{i}(B)$ is a projective $A\left[\overline{x_{2}} ; \sigma, \delta\right]$-module and thus the following twisted product complex is a projective resolution of \mathbb{k} as a $A\left[\overline{x_{2}} ; \sigma, \delta\right]$-module.
$\cdots \xrightarrow{d_{3}}(A \otimes B)^{\oplus 3} \xrightarrow{d_{2}}(A \otimes B)^{\oplus 2} \xrightarrow{d_{1}} A \otimes B \longrightarrow \mathbb{k} \longrightarrow 0$

$$
\text { with } d_{k}=\sum_{i+j=k} d_{i, j} \text { for } d_{i, j}=\left(d_{i} \otimes 1\right)+\left((-1)^{i} \otimes d_{j}\right)
$$

Selected sources

目 P．A．Bergh and S．Oppermann，
＂Cohomology of twisted tensor products，＂ J．Algebra 320 （2008），3327－3338．
A．Čap，H．Schichl，and J．Vanžura， ＂On twisted tensor products of algebras，＂ Comm．Algebra 23 （1995），no．12，4701－4735．

图 V．C．Nguyen，X．Wang and S．Witherspoon，
＂Finite generation of some cohomology rings via twisted tensor product and Anick resolutions＂，
J．Pure Appl．Algebra 223 （2019），no．1，316－339．
囯 A．V．Shepler and S．Witherspoon， ＂Resolutions for twisted tensor products＂， Pacific J．Math． 298 （2019），no．2， 445 －469．

