Difference Sets in 2-Groups and their Codes

JJ Hoo
Advised by Dr. Ken Smith and Dr. Jim Davis

Graduate Algebra Symposium
Texas A\&M
October 2019

Our Research

Research Agenda

This project aims to utilize difference sets to achieve and derive information and properties related to Reed-Muller Codes and Bent Functions, providing results that have potential uses in quantum cryptography.

- Motivations

Difference Sets
Reed-Muller Codes and Bent Functions
Results
Future Work

Our Research

Research Agenda

This project aims to utilize difference sets to achieve and derive information and properties related to Reed-Muller Codes and Bent Functions, providing results that have potential uses in quantum cryptography.

- Motivations
- Difference Sets

Reed-Muller Codes and Bent Functions
Results
Future Work

Our Research

Research Agenda

This project aims to utilize difference sets to achieve and derive information and properties related to Reed-Muller Codes and Bent Functions, providing results that have potential uses in quantum cryptography.

- Motivations
- Difference Sets
- Reed-Muller Codes and Bent Functions

Results
Future Work

Our Research

Research Agenda

This project aims to utilize difference sets to achieve and derive information and properties related to Reed-Muller Codes and Bent Functions, providing results that have potential uses in quantum cryptography.

- Motivations
- Difference Sets
- Reed-Muller Codes and Bent Functions
- Results

Future Work

Our Research

Research Agenda

This project aims to utilize difference sets to achieve and derive information and properties related to Reed-Muller Codes and Bent Functions, providing results that have potential uses in quantum cryptography.

- Motivations
- Difference Sets
- Reed-Muller Codes and Bent Functions
- Results
- Future Work

Difference Sets

Definition

A (v, k, λ) difference set is a specific subset of \mathbb{Z}_{v} labeled D such that the multiset $\left\{d_{i}-d_{j} \mid d_{i} d_{j} \in D\right\}$ covers each non-zero element λ times.

Difference Sets

Definition

A (v, k, λ) difference set is a specific subset of \mathbb{Z}_{v} labeled D such that the multiset $\left\{d_{i}-d_{j} \mid d_{i} d_{j} \in D\right\}$ covers each non-zero element λ times.

Example

The set $\{1,2,4\} \subseteq \mathbb{Z}_{7}$ is a $(7,3,1)$ difference set.

Difference Set Example

$$
Z_{7}=\{0,1,2,3,4,5,6\}, D=\{1,2,4\}
$$

$d_{i}-d_{j}$	1	2	4
1	0		
2		0	
4			0

Difference Set Example

$$
Z_{7}=\{0,1,2,3,4,5,6\}, D=\{1,2,4\}
$$

$d_{i}-d_{j}$	1	2	4
1	0	$-1=6$	
2	1	0	
4			0

Difference Set Example

$$
Z_{7}=\{0,1,2,3,4,5,6\}, D=\{1,2,4\}
$$

$d_{i}-d_{j}$	1	2	4
1	0	6	$-3=4$
2	1	0	
4	3		0

Difference Set Example

$$
Z_{7}=\{0,1,2,3,4,5,6\}, D=\{1,2,4\}
$$

$d_{i}-d_{j}$	1	2	4
1	0	6	4
2	1	0	$-2=5$
4	3	2	0

Difference Set Example

$$
Z_{7}=\{0,1,2,3,4,5,6\}, D=\{1,2,4\}
$$

$d_{i}-d_{j}$	1	2	4
1	0	6	4
2	1	0	5
4	3	2	0

Multiplicative Version

Remark

We can represent these difference sets as polynomials by using a multiplicative form for the multisets as $\left\{d_{i} d_{j}^{-1} \mid d_{i}, d_{j} \in D\right\}$. Thus, taking $C_{7}:=\left\langle x \mid x^{7}=1\right\rangle$, we have, as in our previous example:

$$
D=\left\{x, x^{2}, x^{4}\right\}
$$

Incidence Matrices

Definition

We define the incidence matrix of a difference set to be as follows:
Given a group G with a difference set D, we consider a pseudo-Cayley Table of G, where instead of composing elements of G with themselves, we compose elements of G with their respective inverses. If the resulting product is an element of D, we assign a value of 1 to that product, and 0 otherwise. This gives as a matrix over \mathbb{Z}_{2}.

Incidence Matrix Example

$$
G=C_{7} \quad D=\left\{x, x^{2}, x^{4}\right\}
$$

$G_{i} G_{j}^{-1}$	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
1	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
x	x	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}
x^{2}	x^{2}	x	1	x^{6}	x^{5}	x^{4}	x^{3}
x^{3}	x^{3}	x^{2}	x	1	x^{6}	x^{5}	x^{4}
x^{4}	x^{4}	x^{3}	x^{2}	x	1	x^{6}	x^{5}
x^{5}	x^{5}	x^{4}	x^{3}	x^{2}	x	1	x^{6}
x^{6}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x	1

Incidence Matrix Example

$$
G=C_{7} \quad D=\left\{x, x^{2}, x^{4}\right\}
$$

$G_{i} G_{j}^{-1}$	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
1	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
x	x	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}
x^{2}	x^{2}	x	1	x^{6}	x^{5}	x^{4}	x^{3}
x^{3}	x^{3}	x^{2}	x	1	x^{6}	x^{5}	x^{4}
x^{4}	x^{4}	x^{3}	x^{2}	x	1	x^{6}	x^{5}
x^{5}	x^{5}	x^{4}	x^{3}	x^{2}	x	1	x^{6}
x^{6}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x	1

$$
G=C_{7} \quad D=\left\{x, x^{2}, x^{4}\right\}
$$

$G_{i} G_{j}^{-1}$	1	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
1	0	0	0	1	0	1	1
x	1	0	0	0	1	0	1
x^{2}	1	1	0	0	0	1	0
x^{3}	0	1	1	0	0	0	1
x^{4}	1	0	1	1	0	0	0
x^{5}	0	1	0	1	1	0	0
x^{6}	0	0	1	0	1	1	0

Bent Functions

Definition

A Bent Function is a function that maps an input from \mathbb{Z}_{2}^{n} for some $n \in \mathbb{N}$ to \mathbb{Z}_{2}.

Remark

For our sake, we can consider bent functions to be polynomials formed from a set of variables, each in \mathbb{Z}_{2}, that provide an output of 0 or 1 . For instance, in \mathbb{Z}_{2}^{4}, a particular difference set can be expressed as the set of vectors of length 4 such that $x_{1} x_{2}+x_{3} x_{4}=1$, where each x_{i} is an element of \mathbb{Z}_{2}.

Bent Function Example

$$
G=\mathbb{Z}_{2}^{4}
$$

$$
D=\{0011,0111,1011,1100,1101,1110\}
$$

Remark

We can write the elements of Z_{2}^{4} in lexicographical order, and represent D as a vector in \mathbb{Z}_{16} such that at each position in the vector, a 1 indicates that that indexed element is included in D. In this case, D can be represented as 0001000100011110 .

Reed-Muller Code

Definition

We define a Reed-Muller Code to be a set of binary codewords $R M(n, k)$, interpreted as the $n^{t h}$ order k-variable code, where each codeword is a linear combination of k variables and the $\mathbf{1}$ vector. As a result, each codeword consists of 2^{k} bits due to binary coding.

Remark

In our example, we examine $R M(1,4)$, and see that there exist 32 codewords in $R M(1,4)-2^{4}=16$ linear combinations and their complements.

Reed-Muller Code Example

Example

$$
R M(1,2)=\{0000,0011,0101,0110,1010,1001,1111,1100\}
$$

$$
\begin{aligned}
R M(1,3)=\{ & 00000000,00001111,00110011,00111100, \\
& 01010101,01011010,01100110,01101001, \\
& 10101010,10100101,10011001,10010110, \\
& 11111111,11110000,11001100,11000011\}
\end{aligned}
$$

Reed-Muller Code Example

Example

$$
R M(1,2)=\{0000,0011,0101,0110,1010,1001,1111,1100\}
$$

Example

$$
\begin{aligned}
& R M(1,3)=\{00000000,00001111,00110011,00111100 \\
& 01010101,01011010,01100110,01101001 \\
& 10101010,10100101,10011001,10010110 \\
&11111111,11110000,11001100,11000011\}
\end{aligned}
$$

Bent Function Example

$$
G=
$$

Remark

This specific choice of D recalls our previous example of a bent function such that $x_{1} x_{2}+x_{3} x_{4}=1$. Note that this representation has 61 's and 100 's. Thus, this bent function has a distance of either 6 or 10 from each of the 32 Reed-Muller codewords.

Definition

The distance between a function and a codeword is defined as the number of places in which the vectors differ.

Results

Lemma

- Every row of the incidence matrix corresponding to a given difference set of the form \mathbb{Z}_{2}^{n} is a bent function.
- The sum of any two rows of the incidence matrix of a difference set is a Reed-Muller codeword.
- The sum of a Bent Function and a Reed-Muller codeword is itself a bent function.
- Each Reed-Muller codeword is a linear combination of rows of the incidence matrix of a difference set.

Incidence Matrix of $Z_{8} \times Z_{2}$

$$
G=\left\langle x, y \mid x^{8}=y^{2}=1, x y=y x\right\rangle
$$

Remark

We can construct a difference set by taking a union of the cosets of subgroups. In other words, we have a $(16,6,2)$ difference set comprised of a union of cosets of:

$$
\begin{gathered}
H_{1}=\left\langle x^{4}\right\rangle \\
H_{2}=\langle y\rangle \\
H_{3}=\left\langle x^{4} y\right\rangle
\end{gathered}
$$

Incidence Matrix of $Z_{8} \times Z_{2}$

Example

Consider the difference set using the previously shown construction of:

$$
D=x\langle y\rangle \cup x^{2}\left\langle x^{4}\right\rangle \cup x^{3}\left\langle x^{4} y\right\rangle
$$

Each separate subgroup H_{i} admits an incidence submatrix \mathcal{H}_{i}.

$$
\mathcal{H}_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \mathcal{H}_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \mathcal{H}_{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Incidence Matrix of $Z_{8} \times Z_{2}$

Remark

We can construct the overall incidence matrix of $Z_{8} \times Z_{2}$ as submatrices corresponding to the \mathcal{H}_{i} subblocks, resulting in an anti-symmetric block matrix with $\mathbf{0}$ matrices on the diagonal:

$$
\text { Incidence }_{D}=\left(\begin{array}{cccc}
0 & \mathcal{H}_{2} & \mathcal{H}_{1} & \mathcal{H}_{3} \\
\overline{\mathcal{H}_{3}} & 0 & \mathcal{H}_{2} & \mathcal{H}_{1} \\
\mathcal{H}_{1} & \overline{\mathcal{H}_{3}} & 0 & \mathcal{H}_{2} \\
\overline{\mathcal{H}_{2}} & \mathcal{H}_{1} & \overline{\mathcal{H}_{3}} & 0
\end{array}\right)
$$

Schur Product

Definition

We define the Schur Product to be a matrix where each row is a entry-wise product of unique pairwise products of rows of the previously defined incidence matrix. As such, the size of the Schur matrix associated with a difference set is $\binom{k}{2} \times k$, where k is the size of the difference set. The rank of this matrix is then defined as the Schur Rank.

Summary of Results

Lemma

When taking the so-called Schur ranks of incidence matrices, the minimal such Schur rank is $\binom{n}{2}$, where n is the rank of the incidence matrix itself.

Lemma

Given a difference set generated by the bent function $x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{2 n-1} x_{2 n}$, we have the result that the sum of any three rows of the associated incidence matrix will return either a row or row-complement of the same incidence matrix. This originates from each sum of the bent function and a codeword from $R M(1,2 n)$ being itself a bent function.

Acknowledgements

- Dr. Ken Smith, Sam Houston State University
- Dr. Jim Davis, University of Richmond
- The Davis Group from the University of Richmond:
- Calvin Reedy
- Connor Kissane
- Scarlett Sun
- Kartikey Sharma
- Jackman Liu

Thank You

