# Explicit Pieri Inclusions 

John Miller<br>Baylor University

Graduate Algebra Symposium<br>Texas A\&M University

October 19, 2019
e-mail: john_miller5@baylor.edu

## Integer partitions

## Definition

A partition of $n \in \mathbb{N}$ is a sequence of integers

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)
$$

where $\quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0 \quad$ and $\quad \sum \lambda_{i}=n$.

- Only finitely many $\lambda_{i} \neq 0$
- Each $\lambda_{i} \neq 0$ is a part of $\lambda$
- $\lambda \vdash n$ or $|\lambda|=n$

$$
\lambda=(4,2,1,0,0, \ldots)=(4,2,1,0,0)=(4,2,1) \quad|\lambda|=7
$$

## Young diagrams

Partitions of $n$ can be represented by a Young diagram of size $n$, an array of $n$ left-justified boxes with weakly decreasing row length.

Examples:

$$
\lambda=(4,2,1)
$$




$$
\sigma=(6,6,3,3,1,1)
$$



## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$$
(1,1)=\left(1^{2}\right):
$$

$\square$

$$
(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):
$$



## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$(1,1)=\left(1^{2}\right):$

$(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):$


## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$(1,1)=\left(1^{2}\right):$

$(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):$

## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$(1,1)=\left(1^{2}\right):$

$(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):$


## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$(1,1)=\left(1^{2}\right):$

$(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):$


## Blocks of a diagram

Block notation: $\lambda=\left(w_{1}^{h_{1}}, w_{2}^{h_{2}} \ldots, w_{N-1}^{h_{N-1}}, w_{N}^{h_{N}}\right)$ where $w_{i}<w_{i+1}$ and each $w_{i}$ appears as a part of $\lambda$ exactly $h_{i}$ times.

$(1,1)=\left(1^{2}\right):$

$(6,6,6,6,3,3,3,1)=\left(1^{1}, 3^{3}, 6^{4}\right):$


## Young tableaux

A Young tableaux is a filling of a Young diagram, e.g.

| 4 | 2 | 9 | 1 |
| :--- | :--- | :--- | :--- |
| 7 | 5 |  |  |
| 1 |  |  |  |
|  |  |  |  |

## Young tableaux

A Young tableaux is a filling of a Young diagram, e.g.

| 4 | 2 | 9 | 1 |
| :---: | :---: | :---: | :---: |
| 7 |  |  |  |
| 1 |  |  |  |

Semi-standard ones are weakly increasing across rows and strictly increasing down columns.

| 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 3 | 4 | 4 | 4 |
| 3 | 3 | 6 |  |  |  |
| 4 | 5 | 7 |  |  |  |
| 5 |  |  |  |  |  |
| 8 |  |  |  |  |  |

## Representations of $\mathrm{GL}_{n}(\mathbb{C})$

\{polynomial irreducible representations of $\mathrm{GL}_{n}(\mathbb{C})$ \}

$\left\{\right.$ integer partitions $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\}$

## Representations of $\mathrm{GL}_{n}(\mathbb{C})$

\{polynomial irreducible representations of $\mathrm{GL}_{n}(\mathbb{C})$ \}

$$
\prod_{\left\{\text {finteger partition } \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\}}
$$

Weyl modules are the reps of $\mathrm{GL}_{n}(\mathbb{C})$ via this identification:

$$
\lambda \longleftrightarrow \mathbb{S}_{\lambda} .
$$

If $|\lambda|=m$,

- $\mathbb{S}_{\lambda}$ can be constructed as subspaces (or quotients) of $\left(\mathbb{C}^{n}\right)^{\otimes m}$
- A basis is given by the semi-standard tableaux on $\lambda$ with entries $1, \ldots, n$


## Weyl Modules

E.g.

$$
\mathbb{S}_{(m)}=\square \cdots \square=\operatorname{Sym}^{m}\left(\mathbb{C}^{n}\right)
$$



## The Pieri Rule

## Theorem (Pieri Rule)

Let $\mu$ be a partition and $\nu=(1, \ldots, 1)$ be a partition of $m$. Then we have an isomorphism of $\mathrm{GL}_{n}(\mathbb{C})$-modules

$$
\mathbb{S}_{\nu} \otimes \mathbb{S}_{\mu} \cong \bigoplus_{\lambda} \mathbb{S}_{\lambda}
$$

where the sum is over all $\lambda \supset \mu$ obtained by adding $m$ boxes to $\mu$ with no two boxes in the same row. Similarly,

$$
\mathbb{S}_{(m)} \otimes \mathbb{S}_{\mu} \cong \bigoplus_{\lambda} \mathbb{S}_{\lambda}
$$

where the sum is over all $\lambda \supset \mu$ obtained by adding $m$ boxes to $\mu$ with no two boxes in the same column.

## The Pieri Rule - One Box



## The Pieri Rule - Two Boxes



## The Pieri Rule - Three Boxes




## Pieri Inclusions

From the Pieri rule we get maps

$$
S_{\lambda} \rightarrow S_{\nu} \otimes S_{\mu}
$$

called Pieri inclusions, unique up to non-zero scalar multiple.
E.g.


## Pieri Inclusions

From the Pieri rule we get maps

$$
S_{\lambda} \rightarrow S_{\nu} \otimes S_{\mu}
$$

called Pieri inclusions, unique up to non-zero scalar multiple.
E.g.


The first explicit description of such inclusions was given by Olver (1982) in the "1-box removal" case

$$
S_{\lambda} \xrightarrow{\Phi_{0}} S_{(1)} \otimes S_{\mu}
$$

with the general case given by iteration.

## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{|J| J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.

## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{|J| J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,


## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{|J| J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,

$$
\square \stackrel{\Phi_{O}}{\longrightarrow} \square \otimes \square, \quad \Phi_{O}\binom{\frac{1}{2}}{\frac{2}{3}}=?
$$

## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,

$$
\begin{aligned}
& \square \stackrel{\Phi_{O}}{\longrightarrow} \square \otimes \square, \quad \Phi_{O}\binom{\frac{1}{2}}{\frac{2}{3}}=? \\
& \frac{\left\lvert\, \frac{1}{2}\right.}{\frac{1}{2}} \leadsto \quad-3 \otimes \begin{array}{|}
\frac{1}{2} \\
\hline
\end{array}
\end{aligned}
$$

## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,


## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,


## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,


## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,


## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g.,
$\square \xrightarrow{\Phi_{O}} \square \otimes \square, \quad \Phi_{O}\binom{\frac{1}{\frac{2}{3}}}{\frac{3}{3}}=?$

$\rightsquigarrow \quad 2 \otimes \frac{1}{3}$
$\rightsquigarrow \quad-\frac{1}{2} \square \otimes \frac{2}{3}$

## Olver's description of Pieri inclusions

$$
\Phi_{O}=\sum_{J} \frac{(-1)^{\mid J J J}}{c_{J}}
$$

The $J$ are the ways to remove the indicated box up and out of the diagram, $|J|$ is the number of rows used, and the $c_{J}$ depend on the rows used.
E.g., $\quad \square \xrightarrow{\Phi_{O}} \square \otimes \square, \quad \Phi_{O}\left(\frac{\frac{1}{2}}{\frac{2}{3}}\right)=-\boxed{3} \otimes \frac{1}{\frac{1}{2}}+2 \otimes\left[\begin{array}{|c}\frac{1}{3} \\ \hline\end{array}-\frac{2}{3}\right.$

$$
\begin{aligned}
& \begin{array}{|}
\hline \frac{1}{2} \\
\boxed{3}
\end{array} \\
& \begin{array}{|}
\frac{1}{2} \\
\frac{2}{3}
\end{array} \rightsquigarrow-\sqrt{3} \otimes \begin{array}{|}
\frac{1}{2} \\
\frac{1}{3} \\
\hline
\end{array}, \quad \begin{array}{|}
\frac{1}{2} \\
\hline
\end{array}
\end{aligned}
$$

## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.

## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.
E.g.,


## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.
E.g., $\quad \square \xrightarrow{\Phi} \square \otimes \square, \quad \Phi\binom{\frac{1}{2}}{\frac{3}{3}}=$ ?

## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.


| $\frac{1}{2}$ |
| :---: |
| $\boxed{3}$ | ๗-3 $\otimes$| $\frac{1}{2}$ |
| :---: |,

## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.


| $\frac{1}{2}$ |
| :---: |
| $\boxed{3}$ |$\rightsquigarrow-\boxed{3} \otimes$| $\frac{1}{2}$ |
| :---: |,$\quad \longleftarrow$| $\frac{1}{2}$ |
| :---: |$\rightsquigarrow$| $\frac{1}{3}$ |
| :---: |

## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.



## New description of Pieri inclusions

$$
\Phi=\sum_{P} \frac{(-1)^{|P|} P}{H(P)}
$$

The $P$ are the ways to remove the indicated box up and out of the diagram with a row skipping restriction. The coefficients $H(P)$ are similar to the $c_{J}$, but depend only on the blocks used.



## Pieri inclusions removing two boxes




## Pieri inclusions removing two boxes



$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline 3 & \mapsto \sum_{2} \\
\cline { 1 - 1 } 4 & \frac{(-1)^{|P|}}{H(P)} \\
\cline { 1 - 1 } 5 & \frac{P_{2}}{P_{1}} \\
\text { 2-paths } P
\end{array} \otimes P\left(\begin{array}{|l|l|}
\hline & \\
\hline & \\
\hline & \\
\hline
\end{array}\right)
$$

## Pieri inclusions removing two boxes





## Pieri inclusions removing two boxes





## Complexity of the descriptions

In both descriptions, the number of terms in the Pieri inclusion acting on $\lambda=\left(w_{1}^{h_{1}}, \ldots, w_{N}^{h_{N}}\right)$ depends on the number of paths on the diagram.

## Complexity of the descriptions

In both descriptions, the number of terms in the Pieri inclusion acting on $\lambda=\left(w_{1}^{h_{1}}, \ldots, w_{N}^{h_{N}}\right)$ depends on the number of paths on the diagram.

Olver's description: paths given by the number of choices of rows in the diagram, where you must choose the first row.

$$
2^{h_{1}-1} \cdot \prod_{i=2}^{N} 2^{h_{i}}
$$

## Complexity of the descriptions

In both descriptions, the number of terms in the Pieri inclusion acting on $\lambda=\left(w_{1}^{h_{1}}, \ldots, w_{N}^{h_{N}}\right)$ depends on the number of paths on the diagram.

Olver's description: paths given by the number of choices of rows in the diagram, where you must choose the first row.

$$
2^{h_{1}-1} \cdot \prod_{i=2}^{N} 2^{h_{i}}
$$

New description: paths given by the number of choices of rows in the diagram, where you must choose the first row and cannot skip rows within blocks.

$$
h_{1} \cdot \prod_{i=2}^{N}\left(h_{i}+1\right)
$$

## Computation Time Examples

## Computation Time Examples

Olver's alg:
i3: time pieri( $\{6,6,6\},\{3\}, C C[a, b, c])$ -- used 0.723831 seconds

$$
o 3=\begin{array}{lll}
\mid & 6 c & \mid \\
\mid & -36 b & \mid \\
\mid & 216 a & \mid
\end{array}
$$

New alg:

$$
\begin{aligned}
\text { i31: } & \text { time pieri }(\{6,6,6\},\{3\}, C C[a, b, c]) \\
& -- \text { used } 0.0219184 \text { seconds } \\
031= & \left|\begin{array}{ll}
6 c \\
\mid & -36 b \\
\mid & 216 a
\end{array}\right|
\end{aligned}
$$

## Computation Time Examples

Olver's alg:
14 : time pieri(\{7,7,7\}, \{3\}, CC[a,b,c]) -- used 88.0308 seconds

$$
\left.o 4=\begin{array}{ll}
\mid & 7 c \\
\mid & -49 b \\
\mid & 343 a
\end{array} \right\rvert\,
$$

New alg:
i32: time pieri( $\{7,7,7\},\{3\}, \mathrm{CC}[a, b, c])$
-- used 0.0350425 seconds

$$
032=\begin{array}{lll}
\mid & 7 c & \mid \\
\mid & -49 b & \mid \\
\mid & 343 a & \mid
\end{array}
$$

## Computation Time Examples

Olver's alg:

```
i3: time pieri( \(\{8,8,8\}\), \(\{3\}, \mathrm{CC}[a, b, c])\) ^C ^Cstdio:3:6:(3): error: interrupted -- used 3538.41 seconds
```

New alg:

133: time pieri( $\{8,8,8\}$, $\{3\}, \mathrm{CC}[a, b, c])$ -- used 0.0688948 seconds

$$
o 33=\left|\begin{array}{lll}
\mid & 8 c & \mid \\
\mid & -64 b \\
\mid & 512 a
\end{array}\right|
$$

Thank You!


