Derivation Operators for a Family of Quiver Algebras

Tolulope Oke

Graduate Algebra Symposium,
Texas A\&M University

October 19, 2019

Definition
Let A be an algebra over a field k.

Definition

Let A be an algebra over a field k.

- A is a ring with 1 and has a k -vector space structure over.
- The multiplication $A \times A \rightarrow A$ on A is compatible with the multiplication in the field. i.e

$$
\lambda(a b)=(a \lambda) b=a(\lambda b)=(a b) \lambda
$$

for $\lambda \in k, a, b \in A$

Definition

A derivation D on A is a map $D: A \rightarrow A$ satisfying the Leibniz's rule.

$$
D(a b)=a D(b)+D(a) b
$$

Definition

A derivation D on A is a map $D: A \rightarrow A$ satisfying the Leibniz's rule.

$$
D(a b)=a D(b)+D(a) b
$$

If M is an A-bimodule, a k-linear map $D: A \rightarrow M$ satisfying the Leibniz rule is a derivation.

Definition

A derivation D on A is a map $D: A \rightarrow A$ satisfying the Leibniz's rule.

$$
D(a b)=a D(b)+D(a) b
$$

If M is an A-bimodule, a k-linear map $D: A \rightarrow M$ satisfying the Leibniz rule is a derivation.
Remarks

- The space of all k-linear derivations on A is denoted $\operatorname{Der}_{k}(A)$, and for any A-module M, it is denoted $\operatorname{Der}_{k}(A, M)$.

Definition

A derivation D on A is a map $D: A \rightarrow A$ satisfying the Leibniz's rule.

$$
D(a b)=a D(b)+D(a) b
$$

If M is an A-bimodule, a k-linear map $D: A \rightarrow M$ satisfying the Leibniz rule is a derivation.

Remarks

- The space of all k-linear derivations on A is denoted $\operatorname{Der}_{k}(A)$, and for any A-module M, it is denoted $\operatorname{Der}_{k}(A, M)$.
- Both $\operatorname{Der}_{k}(A), \operatorname{Der}_{k}(A, M)$ are k-modules. That is $\alpha D, D_{1}+D_{2} \in \operatorname{Der}_{k}(A, M)$ for all $D, D_{1}, D_{2} \in \operatorname{Der}_{k}(A, M)$.

Definition

A derivation D on A is a map $D: A \rightarrow A$ satisfying the Leibniz's rule.

$$
D(a b)=a D(b)+D(a) b
$$

If M is an A-bimodule, a k-linear map $D: A \rightarrow M$ satisfying the Leibniz rule is a derivation.

Remarks

- The space of all k-linear derivations on A is denoted $\operatorname{Der}_{k}(A)$, and for any A-module M, it is denoted $\operatorname{Der}_{k}(A, M)$.
- Both $\operatorname{Der}_{k}(A), \operatorname{Der}_{k}(A, M)$ are k-modules. That is $\alpha D, D_{1}+D_{2} \in \operatorname{Der}_{k}(A, M)$ for all $D, D_{1}, D_{2} \in \operatorname{Der}_{k}(A, M)$.
- $\operatorname{Der}_{k}(A, M)$ is a Lie algebra with a Lie bracket

$$
\left[D_{1}, D_{2}\right]=D_{1} \cdot D_{2}-D_{2} \cdot D_{1}
$$

Examples

- Let $C^{\infty}([a, b])$ be the space of all infinitely differentiable functions on the interval $[a, b]$, then

$$
D: C^{\infty}([a, b]) \rightarrow C^{\infty}([a, b])
$$

defined by $D(f)=\frac{d}{d x}(f)$ is a derivation.

Examples

- Let $C^{\infty}([a, b])$ be the space of all infinitely differentiable functions on the interval $[a, b]$, then

$$
D: C^{\infty}([a, b]) \rightarrow C^{\infty}([a, b])
$$

defined by $D(f)=\frac{d}{d x}(f)$ is a derivation.

- Let $C\left(\mathbb{R}^{n}\right)$ be the algebra of all real-valued differentiable function on \mathbb{R}^{n}, then

$$
D: C\left(\mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}\right)
$$

defined by $D(f)=\frac{\partial}{\partial x_{i}}(f)$ is a derivation on $C\left(\mathbb{R}^{n}\right)$.

Examples

- Let $C^{\infty}([a, b])$ be the space of all infinitely differentiable functions on the interval $[a, b]$, then

$$
D: C^{\infty}([a, b]) \rightarrow C^{\infty}([a, b])
$$

defined by $D(f)=\frac{d}{d x}(f)$ is a derivation.

- Let $C\left(\mathbb{R}^{n}\right)$ be the algebra of all real-valued differentiable function on \mathbb{R}^{n}, then

$$
D: C\left(\mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}\right)
$$

defined by $D(f)=\frac{\partial}{\partial x_{i}}(f)$ is a derivation on $C\left(\mathbb{R}^{n}\right)$.

- Let A be a non-commutative algebra, Let $a \in A$ be fixed, then

$$
D_{a}(-): A \rightarrow A
$$

defined by $D_{a}(x)=[a, x]=a x-x a$ is a derivation on A.

Examples contd. [T.Oke]

Let Q be the quiver:

Examples contd. [T.Oke]

Let Q be the quiver:

and consider the following family of quiver algebras

$$
\begin{equation*}
\Lambda_{q}=k Q / I \quad \text { where } I=\left\langle a^{2}, b^{2}, a b-q b a, a c\right\rangle, q \in k \tag{1}
\end{equation*}
$$

Then the following $\left\langle D_{a, a}, D_{b, b}, D_{c, c}, D_{a, a b}, D_{b, a b}, D_{c, b c}\right\rangle$ are derivations on Λ_{q}. where for instance

$$
D_{a, a}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right]
$$

Examples contd. [T.Oke]

Let Q be the quiver:

and consider the following family of quiver algebras

$$
\begin{equation*}
\Lambda_{q}=k Q / I \quad \text { where } I=\left\langle a^{2}, b^{2}, a b-q b a, a c\right\rangle, q \in k \tag{1}
\end{equation*}
$$

Then the following $\left\langle D_{a, a}, D_{b, b}, D_{c, c}, D_{a, a b}, D_{b, a b}, D_{c, b c}\right\rangle$ are derivations on Λ_{q}. where for instance

$$
D_{a, a}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right] \quad \quad \operatorname{Der}_{k}\left(\Lambda_{q}\right) / T \cong H H^{1}\left(\Lambda_{q}\right)
$$

Derivation Operators

Given a derivation $D: A \rightarrow A$, can we extend D to all A-bimodules?.

Derivation Operators

Given a derivation $D: A \rightarrow A$, can we extend D to all A-bimodules?.
Let's try $A^{e}=A \otimes A^{o p}$.

Derivation Operators

Given a derivation $D: A \rightarrow A$, can we extend D to all A-bimodules?.
Let's try $A^{e}=A \otimes A^{o p}$.
Define

$$
D^{e}: A^{e} \rightarrow A^{e}
$$

by $D^{e}=D \otimes 1+1 \otimes D$.

Then D^{e} is a derivation on A^{e} !

Derivation Operators

Given a derivation $D: A \rightarrow A$, can we extend D to all A-bimodules?.
Let's try $A^{e}=A \otimes A^{o p}$.
Define

$$
D^{e}: A^{e} \rightarrow A^{e}
$$

by $D^{e}=D \otimes 1+1 \otimes D$.

Then D^{e} is a derivation on A^{e} !

More generally, we can extend D from a projective bi-module resolution \mathbb{P} of A to itself.

Lemma [N.S. Gopalakrishnan and R. Sridharan]
Let $D: A \rightarrow A$ be a derivation. Then there are k-linear chain maps

$$
\tilde{D}_{\bullet}: \mathbb{P}_{\bullet} \rightarrow \mathbb{P}_{\bullet}
$$

lifting f with the property

$$
\begin{equation*}
\tilde{D}_{n}((a \otimes b) \cdot x)=D(a) x b+a \tilde{D}_{n}(x) b+a x D(b) \tag{2}
\end{equation*}
$$

for each n with $a, b \in A$ and $x \in \mathbb{P}_{n}$. Moreover \tilde{D}_{n} is unique up to chain homotopy.

Lemma [N.S. Gopalakrishnan and R. Sridharan]
Let $D: A \rightarrow A$ be a derivation. Then there are k-linear chain maps

$$
\tilde{D}_{\bullet}: \mathbb{P}_{\bullet} \rightarrow \mathbb{P}_{\bullet}
$$

lifting f with the property

$$
\begin{equation*}
\tilde{D}_{n}((a \otimes b) \cdot x)=D(a) x b+a \tilde{D}_{n}(x) b+a x D(b) \tag{2}
\end{equation*}
$$

for each n with $a, b \in A$ and $x \in \mathbb{P}_{n}$. Moreover \tilde{D}_{n} is unique up to chain homotopy.

These chain \tilde{D}_{n} maps are also called derivation operators.

Example

Let

$$
\mathbb{B}_{\bullet}:=\cdots \rightarrow A^{\otimes(n+2)} \xrightarrow{\delta_{n}} A^{\otimes(n+1)} \rightarrow \cdots \rightarrow A^{\otimes 3} \xrightarrow{\delta_{1}} A^{\otimes 2} \rightarrow 0
$$

Example

Let

$$
\mathbb{B}_{\bullet}:=\cdots \rightarrow A^{\otimes(n+2)} \xrightarrow{\delta_{n}} A^{\otimes(n+1)} \rightarrow \cdots \rightarrow A^{\otimes 3} \xrightarrow{\delta_{1}} A^{\otimes 2} \rightarrow 0
$$

where the differential δ_{n} are given by
$\delta_{n}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}$
and the homology in degree 0 is A.
\mathbb{B} • is called the bar resolution of A.

Example contd.

Let $D: A \rightarrow A$ be a derivation.

Example contd.

Let $D: A \rightarrow A$ be a derivation. Extend D to chain map on \mathbb{B} •

where

Example contd.

Let $D: A \rightarrow A$ be a derivation. Extend D to chain map on \mathbb{B}.
where
$\tilde{D}_{n}\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)=\sum_{j=0}^{n+1} a_{0} \otimes \cdots \otimes a_{j-1} \otimes D\left(a_{j}\right) \otimes a_{j+1} \otimes \cdots \otimes a_{n+1}$
for all $a_{0}, \cdots, a_{n+1} \in A$, then extend k-linearly.

Example contd.

Let $D: A \rightarrow A$ be a derivation. Extend D to chain map on \mathbb{B} •
where
$\tilde{D}_{n}\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)=\sum_{j=0}^{n+1} a_{0} \otimes \cdots \otimes a_{j-1} \otimes D\left(a_{j}\right) \otimes a_{j+1} \otimes \cdots \otimes a_{n+1}$
for all $a_{0}, \cdots, a_{n+1} \in A$, then extend k-linearly. Then \tilde{D}_{n} is a derivation operator satisfying equation (2).

Example contd.

Let $D: A \rightarrow A$ be a derivation. Extend D to chain map on \mathbb{B}.
where

$$
\tilde{D}_{n}\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)=\sum_{j=0}^{n+1} a_{0} \otimes \cdots \otimes a_{j-1} \otimes D\left(a_{j}\right) \otimes a_{j+1} \otimes \cdots \otimes a_{n+1}
$$

for all $a_{0}, \cdots, a_{n+1} \in A$, then extend k-linearly. Then \tilde{D}_{n} is a derivation operator satisfying equation (2).
Notice that for $a \otimes b \in A^{e}$, and $x \in \mathbb{B}_{n}$

$$
\tilde{D}_{n}((a \otimes b) \cdot x) \neq(a \otimes b) \tilde{D}_{n}(x)
$$

Brackets on Hochschild Cohomology

The Hochschild cohomology of A with coefficients in M is given as

$$
H H^{*}(A)=E x t_{A^{e}}^{*}(A, M)=\bigoplus_{n=0} H^{n}\left(\operatorname{Hom}_{k}\left(A^{\otimes n}, M\right)\right)
$$

Lie bracket on $H H^{*}(A)$

$$
[,]: H H^{m}(A) \times H H^{n}(A) \rightarrow H H^{m+n-1}(A)
$$

defined by

Brackets on Hochschild Cohomology

The Hochschild cohomology of A with coefficients in M is given as

$$
H H^{*}(A)=\operatorname{Ext}_{A^{e}}^{*}(A, M)=\bigoplus_{n=0} H^{n}\left(\operatorname{Hom}_{k}\left(A^{\otimes n}, M\right)\right)
$$

Lie bracket on $H H^{*}(A)$

$$
[,]: H H^{m}(A) \times H H^{n}(A) \rightarrow H H^{m+n-1}(A)
$$

defined by

$$
[f, g]=f \circ g-(-1)^{(m-1)(n-1)} g \circ f
$$

$f \circ g=\sum_{j=1}^{m}(-1)^{(n-1)(j-1)} f \circ_{j} g \quad$ where
$f \circ_{j} g\left(a_{1} \otimes \cdots a_{m+n-1}\right)=f\left(a_{1} \otimes \cdots \otimes a_{j-1} \otimes g\left(a_{j} \otimes \cdots \otimes a_{j+n-1}\right)\right.$

$$
\left.\otimes a_{j+n} \otimes \cdots \otimes a_{m+n}\right)
$$

Properties satisfied by the bracket.
Let $f \in \operatorname{Hom}_{k}\left(A^{\otimes m}, A\right), g \in \operatorname{Hom}_{k}\left(A^{\otimes n}, A\right), h \in \operatorname{Hom}_{k}\left(A^{\otimes t}, A\right)$

Properties satisfied by the bracket.

Let $f \in \operatorname{Hom}_{k}\left(A^{\otimes m}, A\right), g \in \operatorname{Hom}_{k}\left(A^{\otimes n}, A\right), h \in \operatorname{Hom}_{k}\left(A^{\otimes t}, A\right)$

- Anti-symmetry: $[f, g]=(-1)^{(m-1)(n-1)}[g, f]$

Properties satisfied by the bracket.

Let $f \in \operatorname{Hom}_{k}\left(A^{\otimes m}, A\right), g \in \operatorname{Hom}_{k}\left(A^{\otimes n}, A\right), h \in \operatorname{Hom}_{k}\left(A^{\otimes t}, A\right)$

- Anti-symmetry: $[f, g]=(-1)^{(m-1)(n-1)}[g, f]$
- Jacobi identity:

$$
\begin{aligned}
& (-1)^{(m-1)(t-1)}[f,[g, h]]+(-1)^{(n-1)(m-1)}[g,[h, f]]+ \\
& (-1)^{(t-1)(n-1)}[h,[f, g]]=0
\end{aligned}
$$

Properties satisfied by the bracket.

Let $f \in \operatorname{Hom}_{k}\left(A^{\otimes m}, A\right), g \in \operatorname{Hom}_{k}\left(A^{\otimes n}, A\right), h \in \operatorname{Hom}_{k}\left(A^{\otimes t}, A\right)$

- Anti-symmetry: $[f, g]=(-1)^{(m-1)(n-1)}[g, f]$
- Jacobi identity:

$$
\begin{aligned}
& (-1)^{(m-1)(t-1)}[f,[g, h]]+(-1)^{(n-1)(m-1)}[g,[h, f]]+ \\
& (-1)^{(t-1)(n-1)}[h,[f, g]]=0
\end{aligned}
$$

- Graded Lie bracket:

$$
\delta^{*}([f, g])=(-1)^{(n-1)}\left[\delta^{*}(f), g\right]+\left[f, \delta^{*}(g)\right]
$$

Theorem [M. Suarez-Alvarez]
Let $f: A \rightarrow A$ be a derivation and $g \in \operatorname{Hom}_{k}\left(\mathbb{P}_{n}, A\right)$ be any cocycle. Let $\tilde{f}_{\bullet}: \mathbb{P}_{\bullet} \rightarrow \mathbb{P} \bullet$ be derivation operators satisfying equation (2). The Gerstenhaber bracket of f and g is given by the following

$$
[f, g]=f g-g \tilde{f}_{n}
$$

as cocycles on \mathbb{P}_{n}.

Theorem [M. Suarez-Alvarez]
Let $f: A \rightarrow A$ be a derivation and $g \in \operatorname{Hom}_{k}\left(\mathbb{P}_{n}, A\right)$ be any cocycle. Let $\tilde{f}_{\bullet}: \mathbb{P}_{\bullet} \rightarrow \mathbb{P}_{\bullet}$ be derivation operators satisfying equation (2). The Gerstenhaber bracket of f and g is given by the following

$$
[f, g]=f g-g \tilde{f}_{n}
$$

as cocycles on \mathbb{P}_{n}.

Compare with $\left[D_{1}, D_{2}\right]=D_{1} \cdot D_{2}-D_{2} \cdot D_{1}$.
proof uses chain maps between $\mathbb{B} \bullet$ and \mathbb{P}_{\bullet}.

Recall previous examples contd.

$\Lambda_{q}=k Q / I \quad$ where $I=\left\langle a^{2}, b^{2}, a b-q b a, a c\right\rangle, q \in k$, and Q is the

Recall previous examples contd.

$\Lambda_{q}=k Q / I \quad$ where $I=\left\langle a^{2}, b^{2}, a b-q b a, a c\right\rangle, q \in k$, and Q is the
quiver:

$$
\operatorname{Der}_{k}\left(\Lambda_{q}\right)=\left\langle D_{a, a}, D_{b, b}, D_{c, c}, D_{a, a b}, D_{b, a b}, D_{c, b c}\right\rangle .
$$

Proposition [T.Oke]

Let $\Lambda_{q}=\frac{k Q}{l}$ be a family of quiver algebra. Let $D: \Lambda_{q} \rightarrow \Lambda_{q}$ be a derivation on Λ_{q}. Then the derivation operators $\tilde{D}_{n}: \mathbb{K}_{n} \rightarrow \mathbb{K}_{n}$ are defined in the following ways

Proposition [T.Oke]

Let $\Lambda_{q}=\frac{k Q}{l}$ be a family of quiver algebra. Let $D: \Lambda_{q} \rightarrow \Lambda_{q}$ be a derivation on Λ_{q}. Then the derivation operators $\tilde{D}_{n}: \mathbb{K}_{n} \rightarrow \mathbb{K}_{n}$ are defined in the following ways

- $\tilde{D}_{n}\left(\varepsilon_{r}^{n}\right)=t(n, r) \varepsilon_{r}^{n}, \quad$ for some $t(n, r) \in k$. if D is any of $\left\{D_{a, a}, D_{b, b}, D_{c, c}\right\}$.

Proposition [T.Oke]

Let $\Lambda_{q}=\frac{k Q}{l}$ be a family of quiver algebra. Let $D: \Lambda_{q} \rightarrow \Lambda_{q}$ be a derivation on Λ_{q}. Then the derivation operators $\tilde{D}_{n}: \mathbb{K}_{n} \rightarrow \mathbb{K}_{n}$ are defined in the following ways

- $\tilde{D}_{n}\left(\varepsilon_{r}^{n}\right)=t(n, r) \varepsilon_{r}^{n}, \quad$ for some $\quad t(n, r) \in k$. if D is any of $\left\{D_{a, a}, D_{b, b}, D_{c, c}\right\}$.
- $\tilde{D}_{n}\left(\varepsilon_{r}^{n}\right)= \begin{cases}t f_{k}^{1} \varepsilon_{r}^{n}+t^{\prime} \varepsilon_{r-1}^{n} f_{k+1}^{1}, & \text { for } 0 \leq r<n+1 \\ t f_{k}^{1} \varepsilon_{n+1}^{n}+t^{\prime} \varepsilon_{1}^{n} f_{k+1}^{1}, & \text { whenever } r=n+1 .\end{cases}$
if D is any of $\left\{D_{a, a b}, D_{b, a b}, D_{c, b c}\right\}$.

For instance

- If $D=D_{a, a}$, then

$$
\tilde{D}_{n}\left(\varepsilon_{r}^{n}\right)=\left\{\begin{array}{ll}
(n-r) \varepsilon_{r}^{n} & \text { when } r=0,1,2, \cdots, n \\
(n-1) \varepsilon_{r}^{n} & \text { when } r=n+1
\end{array} .\right.
$$

$\phi=(a, 0,0)$									
$\varepsilon_{r}^{n}(n \downarrow, r \rightarrow)$	0	1	2	3	4	5	6	\cdots	r
0	0	0							
1	$1 \varepsilon_{0}^{1}$	0	0						
2	$2 \varepsilon_{0}^{2}$	$1 \varepsilon_{1}^{2}$	0	$1 \varepsilon_{3}^{2}$					
3	$3 \varepsilon_{0}^{3}$	$2 \varepsilon_{1}^{3}$	$1 \varepsilon_{2}^{3}$	0	$2 \varepsilon_{4}^{3}$				
4	$4 \varepsilon_{0}^{4}$	$3 \varepsilon_{1}^{4}$	$2 \varepsilon_{2}^{4}$	$1 \varepsilon_{3}^{4}$	0	$3 \varepsilon_{5}^{4}$			
5	$5 \varepsilon_{0}^{5}$	$4 \varepsilon_{1}^{5}$	$3 \varepsilon_{2}^{5}$	$2 \varepsilon_{3}^{5}$	$1 \varepsilon_{4}^{5}$	0	$4 \varepsilon_{6}^{5}$		

Thanks for listening.

Bibliography I

（R．Snashall，Support varieties and the Hochschild cohomology ring modulo nilpotence，Proceedings of the 41st Symposium on Ring Theory and Representation Theory， Tsukuba，2009，pp． 6882
目 N．Snashall，．Solberg，Support varieties and the Hochschild cohomology rings，Proc．London Maths．Soc． 88 （2004），no．3， 705732
围 R．O．Buchweitz，E．L．Green，N．Snashall，． Solberg，Multiplicative structures for Koszul algebras，The Quarterly Journal of Mathematics 2008 59（4），441－454， Database：arXiv
目 R．O．Buchweitz，E．L．Green，D．Madsenl，． Solberg，Hochshchild cohomology without finite global dimension，Math．Res．Lett．，vol． 12 （2005），no．6，805－816， Database：arXiv

Bibliography II

囯 E．L．Green，G．Hartman，E．N．Marcos，．Solberg， Resolutions over Koszul algebras arXiv：math／0409162

嗇 S．Witherspoon，Hochschild Cohomology for Algebras， Graduate Studies in Mathematics，American Mathematical Society，to appear．
围 R．Martinez－Villa，Introduction to Koszul algebras，Rev． Un．Mat．Argentina 58 （2008），no．2，67－95．
围 F．Xu，Hochschild and ordinary cohomology rings of small categories，Adv Math． 219 （2008），1872－1893．
囯 M．Swarez－Alvarez，A little bit of Extra functoriality for Ext and the computation of the Gerstenhaber brackets， arXiv：1604．06507．

