Generalities on Hop algebras

Recall that $U=U_{q}\left(s l_{2}\right)=k\left[E, F, K, K^{-1}\right] / R$ where R is the ideal generated by

$$
\begin{array}{ll}
K K^{-1}=1=K^{-1} K & (R 1) \\
K E K^{-1}=q^{2} E & (R 2) \\
K F K^{-1}=q^{-2} F & (R 3) \\
E F-F E=\frac{K-K^{-1}}{q-q-1} & (R 4) \tag{R4}
\end{array}
$$

We've seen a description for the representations of U both when q is a wot of 1 and otherwise.

For a deeper study of $\operatorname{Rep}(U)$ as well as the representation theory of quantum groups other than $U_{q}\left(S_{2}\right)$, we need a feature of the representation category we have yet to discuss: the ability to tensor 2 representations.

This feature is already present in rep theory of groups and Lie algebras: if G is a group and $u, v \in \operatorname{Rep}(G)$, then $U \otimes V \in \operatorname{Rep}(G)$ by

$$
g \cdot(u \otimes v)=g \cdot u \otimes g \cdot v
$$

and if $U, V \in \operatorname{Rep}(g)$ for a lie alg g then
$u \otimes V \in \operatorname{Rep}(g)$ by

$$
x \cdot(u \otimes v)=u \otimes x \cdot v+x \cdot u \otimes v
$$

In fact, this happens because

$$
\begin{aligned}
& \operatorname{Rep}(G) \cong \operatorname{Rep}(k G) \\
& \operatorname{Rep}(g) \cong \operatorname{Rep}\left(u_{g}\right)
\end{aligned}
$$

and both $K G$ and Hg_{g} are Hops algebras.

Quick intro to Hopf algebras

A Hop algebra is a bialgebra which admits an antipode.

Quick intro to bialgebras

Given an k-algebra A, we can courider $\operatorname{Rep}(A)$. A bialgebra is an algebra with additional structures sit. These structures correspond to Rep (A) being a monoidal category
(roughly speaking)
a category e with a product $x \otimes y \in C$ $\forall x, y \in e$ and unit $\mathbb{1} \in e$ st.

$$
\begin{gathered}
(x \otimes y) \otimes z \cong x \otimes(y \otimes z) \\
x \otimes 1 \cong X \cong X
\end{gathered}
$$

For Rep (A) to be a monoidal cat, we need for all $u, v \in \operatorname{Rep}(A), u \otimes V \in \operatorname{Rep}(A)$ st.
$(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$ as A-modules and $a \operatorname{Rep}(A)$ structure on k s.t.
$U \otimes k \cong U \cong k \otimes U$ as A-modules.

We know that if A, B are k-algebras, then a k-alg map $f: A \rightarrow B$ induces a functor $f^{*}:$ $\operatorname{Rep}(B) \longrightarrow \operatorname{Rep}(A)$.

If $u, v \in \operatorname{Rep}(A)$, then $u \otimes v \in \operatorname{Rep}(A \otimes A)$ so a natural way to have $u \otimes V \in \operatorname{Rep}(A)$ is to have a k-alg map $A \triangleq A \otimes A$.

Similarly, a natural way to have $k \in \operatorname{Rep}(A)$ is to have a k-alg map $A \xrightarrow{\varepsilon} k$.

The condition that $\forall u, v, w \in \operatorname{Rep}(A)$,
$(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$ as A-modules translates to comm. diagram

$$
\begin{array}{cc}
A & \Delta \\
\Delta \downarrow & \tag{1}\\
\mid \Delta A \otimes i d \\
A \otimes A \underset{i d \otimes \Delta}{ } A \otimes A \otimes A
\end{array}
$$

and the condition that $A \otimes k \cong A \cong k \otimes A$ as

A - modules translates to comm diagram

Def. A bialgebra is a k-algebra A with two algebra maps (Δ, ε) satisfying (1) and (2). (A, Δ, ε) where $A \in$ Vet is called a coalgebra.
Δ : coproduct
(1) A is coassociative
ε : counit
(2) A is counital

Fact. If A is an algebra $A=(A, m, u)$ and A is a coalgebra $\quad A=(A, \Delta, \varepsilon)$ then A is a bialgebra
$\Leftrightarrow \Delta$ and ε are algebra maps
$\Leftrightarrow \quad m$ and u are coalgebra maps

What about the antipode?

If $V \in \operatorname{Rep}(G)$, then $V^{*}=\operatorname{Hom}(V, k) \in \operatorname{Rep}(G)$ by

$$
(g \cdot \varphi)(v)=\varphi\left(g^{-1} \cdot v\right) \quad g \in G, \varphi \in V^{*}, v \in V .
$$

Similarly, if $V \in \operatorname{Rep} g$ then $V^{*} \in \operatorname{Rep} g$ by

$$
(x \cdot \varphi)(v)=\varphi((-x) \cdot v) \quad x \in g, \varphi \in V^{*}, v \in V \text {. }
$$

So Rep G and Rep I have the extra properties that objects have "duals".
In a general monoidal category, $\operatorname{Hom} e(X, \mathbb{1})$ is not an object of l. Instead, we make the following defuition:

Def. Let $e=(e, \otimes, \mathbb{1})$ be a monoidal category. A duality in E is a 4 -tuple

$$
(x, y, \text { ev: } x \otimes y \rightarrow \mathbb{1}, \text { coed: } \mathbb{1} \rightarrow y \otimes x)
$$

s.t. the following maps are identity maps:

$$
\begin{aligned}
& X \xlongequal{\cong} X \otimes \mathbb{1} \xrightarrow{i d \otimes \operatorname{cer}^{r}} X \otimes y \otimes X \xrightarrow{\text { ev*id }} \mathbb{1} \otimes X \xrightarrow{\cong} X \\
& y \cong \mathbb{1} \otimes y \xrightarrow{\cos \otimes i d} y \otimes x \otimes y \xrightarrow{\text { id } Q e v} y \otimes \mathbb{1} \xlongequal{\cong} y
\end{aligned}
$$

In this case, we say that y is a right dual of X and X is a left dual of y.

Eg. $e=V_{e c c}^{k}$. For any $V \in V_{e c t}^{f d}$, the maps
$e v: V^{*} \otimes V \rightarrow k,(\varphi, v) \longmapsto \varphi(v)$
corr: $k \rightarrow V \otimes V^{*}, 1 \longmapsto \sum v_{i} \otimes v^{i}$ make $\left(V^{*}, V, e V\right.$, Lev) a duality.
if $\widetilde{e v}$ and $\widetilde{w e r}$ denote the flipped maps of er and coev, then $\left(V, V^{*}, \widetilde{v}, \widetilde{\operatorname{cod} V}\right)$ is also a duality.

Def. A rigid monoidal category is a monoidal cat. s.t. every object has a left and a right dual.

If H is a bialgebra, then for any $V \in \operatorname{Rep}(H)^{f d}$, we want $\left(V^{*}, V, e v, \operatorname{coev}\right)$ and $\left(V, V^{*}, \tilde{e}\right.$, coed $)$ to be dualities in $\operatorname{Rep}(H)^{f d}$, ie. $\operatorname{Rep}(H)^{f d}$ is a rigid monoidal category. In particular, we want the four morphisms ev, coev, $\widetilde{e v}$ and $\widetilde{o e v}$ to be H-mod morphisms. This translates to the following conditions for the map S :
(i) S is bijective
(ii) $S\left(h_{1}\right) h_{2}=\varepsilon(h) \mid=h_{1} S\left(h_{2}\right)$
(iii) $S^{-1}\left(h_{1}\right) h_{2}=\varepsilon(h) \mid=h_{1} S^{-1}\left(h_{2}\right)$
(automatic from $(i)+(i i)$)

In fact, from (i) + (ii), can show that S is an anti-alg map and anti-coalg map.

$$
\left(S: H \rightarrow H^{\circ p} \mid S: H \rightarrow H^{\operatorname{cop}}\right)
$$

Some remarks.
(1) The antipode map S is unique if it exists, since it is the convolution inverse for the identity map in $\operatorname{Hom}(H, H)$.
(2) Since S is an alg map $H \rightarrow H^{\text {PP }}$, we have an induced functor

$$
\operatorname{Mod}-H=H^{o p}-\operatorname{Mod} \rightarrow H-\operatorname{Mod}
$$

hence S lets us switch sides.
(3) If φ is an lanti) algebra automorphism on a Hope algebra $(H, \Delta, \varepsilon, S)$, we can define a new Hop alg structure $\left(H, \varphi_{\Delta}, \varphi_{\varepsilon}, \varphi_{S}\right)$, where

$$
\begin{aligned}
& \varphi_{\Delta}=(\varphi \otimes \varphi) \circ \Delta \circ \varphi^{-1} \\
& \varphi_{\varepsilon}=\varepsilon \circ \varphi-1 \\
& \varphi_{S}= \begin{cases}\varphi \cdot s \circ \varphi-1 & \text { if } \varphi: H \rightarrow H \\
\varphi \circ S^{-1} \circ \varphi-1 & \text { if } \varphi: H \rightarrow H^{\circ p}\end{cases}
\end{aligned}
$$

(4) If H is a Hop algebra and $M, N \in \operatorname{Rep}(H)$, then $\operatorname{Hom}(M, N)$ is an $H-H$ bimod by

$$
h \cdot f \cdot k(m)=h \cdot f(k \cdot m)
$$

Via $S: H H^{\circ p} \longrightarrow H$, $\operatorname{Hom}(M, N)$ is an H-Hop bimod by $h \cdot f \cdot k(m)=h \cdot f(s(k) \cdot m)$ and since H-Bimod- $H^{O P}=(H \otimes H)$-Mod, Hor $(M, N) \in R e p(H)$ via the map $\Delta: H \rightarrow H \otimes H$:

$$
\begin{equation*}
h \cdot f(m)=h_{1} \cdot f\left(s\left(h_{2}\right) \cdot m\right) \tag{*}
\end{equation*}
$$

When $N=k, M^{*}=\operatorname{Hom}(M, k) \in \operatorname{Rep}(H)$.
Further, the linear map

$$
\begin{aligned}
& N \otimes M^{*} \longrightarrow \operatorname{Hom}_{k}(M, N) \\
& n \otimes f \longmapsto \varphi_{f, n}(m)=f(m) n
\end{aligned}
$$

is an H-mod map when $M^{*}, \operatorname{Hom}_{k}(M, N) \in \operatorname{Rep} H \quad \operatorname{via}(*)$.
For any $P \in \operatorname{Rep}(H)$, define

$$
p H=\{p \in P \mid h \cdot p=\varepsilon(h) p \quad \forall h \in H\}
$$

One can show that

$$
\operatorname{Hom}_{k}(M, N)^{H}=\operatorname{Hom}_{H}(M, N)
$$

$U_{q}\left(\mathrm{sl}_{2}\right)$ as a Hop algebra
Recall that $u=u_{q}\left(s l_{2}\right)=k\left[E, F, K, K^{-1}\right] / R$ where R is the ideal generated by

$$
\begin{align*}
& K K^{-1}=1=K^{-1} K \tag{R1}\\
& K E K^{-1}=q^{2} E \tag{RR}\\
& K F K^{-1}=q^{-2} F \tag{RB}\\
& E F-F E=\frac{(R 1)}{q-k^{-1}} \quad(R 2) \tag{R4}\\
&
\end{align*} \quad(R 3)
$$

lemma 3.1. $\exists!k$-alg map $\Delta: U \rightarrow U \otimes U$ defined by $\Delta(E)=E \otimes I+K \otimes E$

$$
\begin{aligned}
& \Delta(F)=F \otimes K^{-1}+1 \otimes F \\
& \Delta(K)=K \otimes K
\end{aligned}
$$

Pf. Let's check $\Delta(R 4)$: we need

$$
\begin{aligned}
& \Delta(E) \Delta(F)-\Delta(F) \Delta(E) \stackrel{?}{=} \frac{\Delta(K)-\Delta\left(K K^{-1}\right)}{q-q-1} \\
& L H S= E F \otimes K^{-1}+E \otimes F+K F \otimes E K^{-1}+K \otimes E F \\
&-F E \otimes K^{-1}-F K \otimes K^{-1} E-E \otimes F-K \otimes F E
\end{aligned}
$$

also, $K F \otimes E K^{-1}=K F \otimes q^{2} K^{-1} E$ (by R2)

$$
\begin{aligned}
& =q^{2} K F \otimes K^{-1} E \\
& =F K \otimes K^{-1} E \quad(\text { by R3 })
\end{aligned}
$$

So we are left with

$$
\begin{aligned}
& (E F-F E) \otimes k^{-1}+k \otimes(E F-F E) \\
= & \left(\left(k-k^{-1}\right) \otimes k^{-1}+k \otimes\left(k-k^{-1}\right)\right) /\left(q-q^{-1}\right)(\text { by } R 4) \\
= & R H S
\end{aligned}
$$

For $\Delta(R 2)$ and $\triangle(R 3)$, we use that $U \otimes U$ has a natural grading induced from U, and prove for each homogeneous component using the formula

$$
\begin{aligned}
&\left(k \otimes k^{-1}\right) u\left(k^{-1} \otimes k\right)=q^{2 n} u \\
& \forall u \in(u \otimes u)_{n}
\end{aligned}
$$

lemma 3.2. $\Delta: U \rightarrow U \otimes U$ is coassociative. Pf. Straightforward calculation.
lemma 3.4. $\exists!k$-alg $\operatorname{map} ~ \varepsilon: U \rightarrow k$ s.t.

$$
\begin{aligned}
\varepsilon(E)=\varepsilon(F) & =0 \\
\varepsilon(K) & =1
\end{aligned}
$$

s.t. $U \xrightarrow{\Delta} U \otimes U$

is commutative.

Pf. Same as 3.2.
lemma 3.6. $\exists!$ alg map $S: U \rightarrow U$ TP with

$$
\begin{gather*}
S(E)=-K^{-1} E, \quad S(F)=-F K \tag{1}\\
S(K)=k^{-1}
\end{gather*}
$$

One has

$$
\begin{equation*}
S^{2}(u)=k^{-1} u k \quad \forall u \in U \tag{2}
\end{equation*}
$$

Pf. For (1), we need to check $S\left(R_{2}\right)-S(R 4)$.
$S(R 2): \quad S(K) S(E) S\left(K^{-1}\right) \stackrel{?}{=} q^{2} S(E)$

$$
\begin{aligned}
L H S & =k^{-1} \cdot 0 p\left(-k^{-1} E\right) \cdot 0 \quad k \\
& =k\left(-k^{-1} E\right) k^{-1}=q^{2}\left(-k^{-1} E\right)=R H S . \\
& \searrow-k^{-1} E \in u_{1}
\end{aligned}
$$

and $K u K^{-1}=q^{2 n} u$ for $u \in U_{n}$
$S(R 3)$ and $S(R 4)$ can be checked similarly.
(2) is a very simple check.

Rok 3.10 (Quantum trace)
let l be a rigid monoidal category, and let's say that we have a natural isomorphism $\alpha_{X}: X \xrightarrow{\cong} X^{*} *$ $\forall x \in e$. Then we can define $\operatorname{trq}(x) \in \operatorname{End}(\mathbb{1})$, called the quantum trace of X (ort α), to be

$$
\mathbb{1} \xrightarrow{\cos x} X \otimes X^{*} \xrightarrow{\alpha x \otimes i d} X^{*} \otimes X^{*} \xrightarrow{e v_{x^{*}}} \mathbb{1} .
$$

In on case, $e=\operatorname{Rep}(U)^{f d}$. We want an H-mod map $\alpha_{M}: M \xrightarrow{\cong} M^{* *}$. Unfortunately, the linear map $M \xrightarrow{\varphi} M^{* *}, \quad m \longmapsto \varphi_{m}(f)=f(m)$ is not H-linear,
since $u \cdot \varphi(m)=\varphi\left(s^{2}(u) \cdot m\right) \neq \varphi(u \cdot m)$ in general. However since $s^{2}(u)=K^{-1} u K$, we just need to make a slight modification: the map

$$
M \xrightarrow{\varphi^{\prime}} M^{*}, m \longmapsto \varphi_{m}^{\prime}(f)=f\left(K^{-1} m\right)
$$

is now a U-module map.
For a $f d$-module M, we can identify $E_{n d_{k}}(M) \xlongequal{\cong}$ $M \otimes M^{*} \longrightarrow k$ with trace then we can identify the quantum trace to with the map

$$
\operatorname{End}_{k}(M) \longrightarrow k, \quad \varphi \longmapsto \operatorname{rr}\left(\varphi \circ k^{-1}\right) \text {. }
$$

Next time: U as a quasi-triangular Hopf algebra.

