Generalities on Hopf algebras

Recall that $M = Mq(sl_2) = k[E, F, K, K']/R$ where R is the ideal generated by $KK^{-1} = 1 = K'K$ (RI) $KEK^{-1} = q^2E$ (R2) $KFK^{-1} = q^2F$ (R3) $EF - FE = \frac{K-K^{-1}}{g-g^{-1}}$ (R4)

For a deeper study of Rep (U) as well as the representation theory of quantum groups other than Ug(sl2), we need a feature of the representation category we have yet to discuss: the ability to tensor 2 representations.

This feature is already present in rep theory of groups and Lie algebras : if G is a group and $U, V \in Rep (G)$, then $U \otimes V \in Rep (G)$ by $g \cdot (u \otimes v) = g \cdot u \otimes g \cdot v$ and if $U, V \in Rep (g)$ for a lie alg g then

$$U \otimes V \in \operatorname{Rep}(g)$$
 by
 $x \cdot (u \otimes v) = u \otimes x \cdot v + x \cdot u \otimes v.$
In fact, this happens because
 $\operatorname{Rep}(G) \cong \operatorname{Rep}(kG)$
 $\operatorname{Rep}(g) \cong \operatorname{Rep}(Ug)$
and both kt and Ug are Hopf algebras.

Quick intro to Hopf algebras

A Hopf algebra is a bialgebra which admits an antipode.

Given an k-algebra A, we can consider Rep (A). A bialgebra is an algebra with additional structures s.t. these structures correspond to Rep (A) being a <u>monoidal category</u> ((ronghly speaking)) a category C with a product $X \otimes Y \in C$ $\forall X, Y \in C$ and unit $I \in C$ s.t. $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$ $X \otimes I \cong X \cong I \otimes X$

For RepLA) to be a monoidal cat, we need for all U, VE Rep (A), UOVE Rep (A) s.t. $(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$ as A-modules and a Rep (A) structure on k s.t. U & k = U = k & U as A-modules.

We know that if A, B are k-algebras, then a
$$k$$
-algemap $f: A \rightarrow B$ induces a functor $f^{*}:$
Rep (B) \rightarrow Rep (A).

We know that if A, B are k-algebras, then a
k-alg map
$$f: A \rightarrow B$$
 induces a functor $f^*:$
 $Rep(B) \rightarrow Rep(A)$.
If U, V \in Rep(A), then U \otimes V \in Rep(A \otimes A)
so a natural way to have U \otimes V \in Rep(A) is to
have a k-alg map $A \stackrel{\triangle}{\rightarrow} A \otimes A$.
Similarly, a natural way to have $k \in$ Rep(A)
is to have a k-alg map $A \stackrel{\triangle}{\rightarrow} K$.

The condition that VU,V, WE Rep (A),

 $(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$ as A-modules translates to comm. diagram

and the condition that A & k = A = k & A as

A-modules translates to comm. diagram $A \xrightarrow{\triangle} A \otimes A$ $A \xrightarrow{[id]} fid \otimes E$ (2) $A \otimes A \xrightarrow{} E \otimes id$

If $V \in \operatorname{Rep}(G)$, then $V^* = \operatorname{Hom}(V, k) \in \operatorname{Rep}(G)$ by $(g \cdot f)(v) = f(g' \cdot v)$ $g \in G, f \in V^*, v \in V.$ Similarly, if $V \in \operatorname{Rep} g$ then $V^* \in \operatorname{Rep} g$ by $(x \cdot f)(v) = f((-x) \cdot v)$ $x \in g, f \in V^*, v \in V.$

So Rep & and Rep & have the extra properties that
objects have "duals".
In a general monoridal category,
$$Home(X, 1)$$
 is not
an object of ℓ . Instead, we make the following
definition:

Def. let
$$\mathcal{L} = [\mathcal{L}, \otimes, \mathbb{I}]$$
 be a monoridal category.
A duality in \mathcal{L} is a 4-tuple
 $(X, Y, eV: X \otimes Y \rightarrow \mathbb{I}, coeV: \mathbb{I} \rightarrow Y \otimes X)$
s.t. the following maps are identity maps:
 $X \xrightarrow{\cong} X \otimes \mathbb{I} \xrightarrow{id \otimes coeV} X \otimes Y \otimes X \xrightarrow{eV \otimes id} \mathbb{I} \otimes X \xrightarrow{\cong} X$
 $Y \xrightarrow{\cong} \mathbb{I} \otimes Y \xrightarrow{coeV \otimes id} Y \otimes X \otimes Y \xrightarrow{id \otimes eV} Y \otimes \mathbb{I} \xrightarrow{\cong} Y$
In this case, we say that Y is a right dual of X
and X is a left dual of Y.

Eq.
$$C = \operatorname{Vect}_{k}$$
. For any $V \in \operatorname{Vect}_{k}^{\mathrm{fd}}$, the maps
 $ev: V^{*} \otimes V \rightarrow k$, $(Y, v) \mapsto Y(v)$
 $\operatorname{coev}: k \rightarrow V \otimes V^{*}$, $1 \mapsto \Sigma v_{i} \otimes v^{i}$
make $(V^{*}, V, ev, \operatorname{coev})$ a duality.
if ev and coev denote the flipped maps of ev and
 coev , then $(V, V^{*}, ev, \operatorname{coev})$ is also a duality.

If H is a bialgebra, then for any
$$V \in \text{Rep}(H)^{\text{fd}}$$
,
we want $(V^*, V, ev, coev)$ and $(V, V^*, ev, coev)$
to be dualities in Rep $(Ht)^{\text{fd}}$, i.e. Rep $(Ht)^{\text{fd}}$ is a vigid
monoidal category. In particular, we want the
four morphisms ev, coev, ev and $coev$ to be H-mod
morphisms. This translates to the following conditions
for the map S:
(i) S is bijective
(ii) $S(h_1)h_2 = \varepsilon(h)I = h_1 S(h_2)$
(iii) $S^{-1}(h_1)h_2 = \varepsilon(h)I = h_1 S^{-1}(h_2)$

(automatic from (i) + (ii))

Some remarks.

(1) The antipode map S is unique if it exists, since it is the convolution inverse for the identity map in Hom (H, H).

(2) Since S is an alg map $H \rightarrow H^{0T}$, we have an induced functor

(3) If
$$\varphi$$
 is an larki) algebra automorphism
on a Hopf algebra $(H, \Delta, \varepsilon, S)$, we can define a new
Hopf alg shuchure $(H, \Delta, \varepsilon, S)$, where
 ${}^{P}\Delta = (\varphi \otimes \varphi) \circ \Delta \circ \varphi^{-1}$
 ${}^{P}S = S \circ \varphi^{-1}$
 ${}^{P}S = S \circ \varphi^{-1}$ if $\varphi: H \rightarrow H$
 $(\varphi \circ S^{-1} \circ \varphi^{-1})$ if $\varphi: H \rightarrow H^{\circ}P^{\circ}$
(4) If H is a Hopf algebra and $M, N \in Rep(H)$,
then $Hom(M, N)$ is an $H-H$ bimod by
 $h \cdot f \cdot k (m) = h \cdot f (k \cdot m)$
Via $S: H^{\circ} \rightarrow H$, $Hom(M_{2}N)$ is an $H-H^{\circ}P^{\circ}$ bimod
by $h \cdot f \cdot k (m) = h \cdot f (S(k) \cdot m)$
and since $H-Bimod - H^{\circ}P = (H \otimes H) - Mod$,
 $Hom(M, N) \in Rep(H)$ via the map $\Delta : H \rightarrow H \otimes H :$
 $h \cdot f(m) = h_{1} \cdot f (S(h_{2}) \cdot m)$. (X)
When $N = k$, $M^{*} = Hom(M_{3}, k) \in Rep(H)$.
Further, the divear map
 $N \otimes M^{*} \rightarrow Hom_{R}(M_{3}N)$
 $n \otimes f \mapsto \Psi_{f,n}(m) = f(m)n$
is an H -mod map when M^{*} , $Hom_{R}(M, N) \in Rep H$ via (X).
For any $P \in Rep(H)$, $define$
 $P^{H} = \{p \in P \mid h \cdot p = s(h)p \forall h \in H \}$
One can show that
 $Hom_{R}(M_{3}N)^{H} = Hom_{H}(M_{3}N)$.

Recall that $M = Mq(sl_2) = k[E, F, F, K^{-1}]/R$ where R is the ideal generated by $KK^{-1} = I = K^{-1}K$ (RI) $KEK^{-1} = q^{2}E$ (R2) $KFK^{-1} = q^{-2}F$ (R3) $EF - FE = \frac{K - K^{-1}}{g - g^{-1}}$ (R4)

Lemma 3.1.
$$\exists ! k \text{-alg map} \Delta : U \rightarrow U \otimes U$$

defined by $\Delta(E) = E \otimes I + K \otimes E$
 $\Delta(F) = F \otimes K' + I \otimes F$
 $\Delta(K) = K \otimes K$.

Pf. let's check D(R4) : we need

 $\Delta(E) \supset (F) - \Delta(F) \supset (E) \stackrel{?}{=} \frac{\Delta(F) - \Delta(K^{-1})}{g - g^{-1}}$

LHS = $EF \otimes k^{-1} + E \otimes F + kF \otimes Ek^{-1} + k \otimes EF$ $-FE \otimes k^{-1} - Fk \otimes k^{-1}E - E \otimes F - k \otimes FE$ also, $kF \otimes Ek^{-1} = kF \otimes g^{2}k^{-1}E$ (by R2) $= g^{2}kF \otimes k^{-1}E$ $= Fk \otimes k^{-1}E$ (by R3)

So we are left with

$$(EF-FE) \otimes F^{-1} + F \otimes (EF-FE)$$

 $= ((K-K^{-1}) \otimes F^{-1} + F \otimes (F-F^{-1})) / (q-q^{-1}) \quad (by R^{+1})$
 $= R^{+1}S$

For $\Delta(R2)$ and $\Delta(R3)$, we use that $U \otimes U$ has a natural grading induced from U, and prove for each homogeneous component using the formula

$$(K \otimes F^{-1}) u (F^{-1} \otimes K) = g^{2n} u$$

 $\forall u \in (U \otimes U)_{n}.$

$$\frac{\text{lemma } 3.2. \quad \Delta: \mathcal{U} \rightarrow \mathcal{U} \otimes \mathcal{U} \text{ is coassociative.}}{\text{PF. Straightforward calculation.}} \qquad \square$$

$$\frac{\text{lemma 3.4}}{\epsilon(E)} = \frac{3! \text{ k-alg map } \epsilon: U \rightarrow \text{ k s.t.}}{\epsilon(E)} = \epsilon(F) = 0$$

$$\epsilon(K) = 1$$
s.t. $U \stackrel{\Delta}{\rightarrow} U \otimes U$

$$\delta \downarrow id \bigvee \downarrow id \otimes \epsilon \quad \text{is commutative.}}$$

$$U \otimes U \stackrel{\rightarrow}{\rightarrow} U$$

Pf. Same as 3.2.

$$\frac{\text{lemma 3.6.}}{S(E)} = -F^{-1}E, \quad S(E) = -FK \quad (1)$$

$$S(K) = F^{-1}$$

One has

$$S^{2}(u) = K^{\prime} u K \quad \forall u \in U$$
 (2)

<u>P</u>f. For (1), we need to check $S(R_2) - S(R_4)$. $S(R_2) = S(K)S(E)S(K^{-1}) \stackrel{?}{=} g^2 S(E)$ LHS = $F^{-1} \cdot P(-F^{-1}E) \cdot P K$ $= K(-F^{-1}E)F^{-1} = g^2(-F^{-1}E) = RHS$. $= -F^{-1}E \in U_1$ and $KuK^{-1} = g^{2n}u$ for $u \in U_n$ $S(R_3)$ and $S(R_4)$ can be checked similarly. (2) is a very simple check.

Rink 3.10 (Quantum trace)
Let C be a rigid monoridal category, and let's say
that we have a netural isomorphism
$$X_X : X \xrightarrow{\cong} X^{**}$$

 $\forall X \in C$. Then we can define $\operatorname{trg}(X) \in \operatorname{End}(1)$,
called the quantum trace of X (wrt od), to be
 $1 \xrightarrow{\operatorname{coev}_X} X \otimes X^* \xrightarrow{\operatorname{did}} X^{**} \otimes X^* \xrightarrow{\operatorname{ev}_{X^*}} 1$.
In our case, $C = \operatorname{Rep}(U)^{\operatorname{fd}}$ we want an H-mod map
 $M \xrightarrow{\cong} M^{**}$. Unfortunately, the linear map
 $M \xrightarrow{\cong} M^{**}$, $m \longmapsto \Psi_m(f) = f(m)$ is not H-linear.

since u. P(m) = P(s²(u)·m) ≠ P(u·m) in general. However since S²(u) = K¹uK, we just need to make a slight modification: the map M⁴, M^{**}, m → P[']m(f) = f(K⁻¹m) is now a U-module map. For a fd-module M, we can identify End_k(M) = M ⊗ M^{*} → k with trace then we can identify the quantum trace trg with the map End_k(M) → k, P → tr(Yo K⁻¹).

Next time : U as a guasi-triangular Hopf algebra.