The commutativity constraint for U-modules.

Fix a field k and
$$q \in k \setminus \{0, \pm 1\}$$
.
Recall $M = Mq(sl_2)$:
As a k-algebra, $M = k[E, F, K, K^{-1}]/R$,
R generated by
 $KK^{-1} = 1 = K^{-1}K$
 $KEK^{-1} = q^{2}E$
 $KFK^{-1} = q^{2}F$
 $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$

Last time, we also discussed a Hopf algebra structure on U: ve have algebra maps $\Delta: \mathcal{U} \rightarrow \mathcal{U} \otimes \mathcal{U}$ $\epsilon: U \rightarrow k$ $\varepsilon(E) = 0$ $\Delta(E) = E \otimes I + K \otimes E$ $\Delta(F) = F \otimes K' + I \otimes F$ $\varepsilon(F) = 0$ $\varepsilon(\mathbf{K}) = \mathbf{I}$ $O(K) = K \otimes K$ and an anti-algebra / anti-coalg automorphism $S: U \rightarrow U$ $S(E) = - K^{-1}E$ S(F) = -FK $\mathcal{Z}(\mathbf{K}) = \mathbf{K}_{-1}$ (U, D, E, S) is a Hopf algebra, which makes Rep (U) to a rigid monoridal (linear) category.

Also recall that if
$$\Psi: U \to U$$
 is an anti-alg
automorphism then we can define a new ttopf alg
structure $(U, \Psi\Delta, \Psi\epsilon, \Psis)$ by
 $\Phi = (\Psi \otimes \Psi) \circ \Delta \circ \Psi^{-1}$ $\Psi\epsilon = \epsilon \circ \Psi^{-1}$
 $\Psi S = \Psi \circ S^{-1} \circ \Psi^{-1}$

In particular, letting $P = \tau$ the anti-automorphism defined from Chapter 1: $\tau(E) = E$, $\tau(F) = F$, $\tau(K) = K^{-1}$, we get $\tau E = E$ and $\tau_{\Delta}(E) = E \otimes 1 + K^{-1} \otimes E$ $\tau_{S}(E) = -KE$

$^{T}\Delta(F) = F \otimes K + 1 \otimes F$	$\tau_{S}(F) = -FK^{-1}$
$C(K) = K \otimes K$	$TS(K) = K^{-1}$

Today, we want to construct a braiding on Rep (W)fd,
i.e. natural isomorphisms of f.d. U-modules
$$M \otimes N \stackrel{\simeq}{=} N \otimes M$$
 satisfying two hexagon identities. It turns
out that we can only accomplish this goal for a subset
of Rep (W)fd, using a "generalized R-matrix".

Def. Set for all integers
$$n \ge 0$$

 $\theta_n = a_n F^n \otimes F^n \in U \otimes U$

where

$$a_n = (-1)^n q^{-n(n-1)/2} \frac{(q-q^{-1})^n}{[n]!} \in k$$

In particular,
$$\theta_0 = 1 \otimes 1$$
, $\theta_1 = -(q - q^{-1}) F \otimes E$
 $\theta_{-1} = 0$
an satisfies the necursion
 $\alpha_n = -q^{-(n-1)} \frac{q - q^{-1}}{EnJ} \alpha_{n-1}$.

$$\frac{lemma}{(1)} \quad \forall n \ge 0,$$

$$(1) \quad (E \otimes I) \quad \theta_n + (K \otimes E) \quad \theta_{n-I}$$

$$= \quad \theta_n(E \otimes I) + \quad \theta_{n-I} \quad (K^{-1} \otimes E)$$

$$(a) \quad (I \otimes F) \quad \theta_n + (F \otimes K^{-1}) \quad \theta_{n-I}$$

$$= \quad \theta_n(I \otimes F) + \quad \theta_{n-I} \quad (F \otimes K)$$

$$(3) \quad (K \otimes K) \quad \theta_n = \quad \theta_n \quad (K \otimes K).$$

Pf. Part (3) follows from an earlier formula $(K \otimes K) u = q^{2n} u(K \otimes K), \quad u \in (U \otimes U)_n$ here $\Theta_n = a_n F^n \otimes E^n \in (U \otimes U)_0$. Parts (1) + (2) follow from elementary calculations.

let M and N E Rep (U)^{fd}. Recall that E and F act nilpotently on M and N, hence we can define a linear transformation

Since
$$F \otimes E$$
 acts nilpstently on $M \otimes N$, we can
find a basis s.t. the matrix of $F \otimes E$ is strictly lower
triangular. Each O_n is (up to scalar) equal to $(F \otimes E)^n$,
so for $n > 0$ its matrix is strictly upper triangular.
Since $\Theta_0 = id$ and $\Theta = \sum_{n \ge 0} \Theta_n$ we see that
 $\Theta_{N,N}$ is bijective.

Recall that for
$$M \in \operatorname{Rep}(W)^{\operatorname{fd}}$$
, we have
 $M = \bigoplus M_{\lambda}$
where $M_{\lambda} = \{m \in M : Km = \lambda m \}$.
Further, the (non-zero) weights are contained in
 $\widetilde{\Lambda} = \{\pm q^{\alpha} \mid \alpha \in \mathbb{Z} \}$.
Suppose we have α map $f \colon \widetilde{\Lambda} \times \widetilde{\Lambda} \to k^{\chi}$ s.t.
 $f(\lambda, \mu) = \lambda f(\lambda, \mu q^{2}) = \mu f(\lambda q^{2}, \mu)$
 $\forall \lambda, \mu \in \widetilde{\Lambda}$

(Will see why we want this map roon). Then we can define, $\forall M_3 N \in \text{Rep}(U)^{\text{fd}}$, a bijective linear transformation $\tilde{f}: M \otimes N \rightarrow M \otimes N$ by $\tilde{f}(m \otimes m') = f(\lambda, \mu) m \otimes n$, $m \in M_\lambda$, $n \in N_\mu$. Set

$$(E\otimes I+F'\otimes E)\circ \tilde{f} = \tilde{f}\circ (E\otimes K+I\otimes E)$$
 (1)

$$(| \otimes F + F \otimes K) \circ f = f \circ (F' \otimes F + F \otimes I)$$
(2)

$$(K \otimes K) \circ f = f \circ (K \otimes K)$$
 (3)

Formula (3) is clear since
$$\tilde{f}$$
 stabilites the weight
spaces. First 2 formulas are similar, we'll show (1):
 $\forall m \in M_{\lambda}$ and $n \in N_{\mu}$, $\lambda, \mu \in k$,
LHS $(m \otimes n) = f(\lambda, \mu) (Em \otimes n + \lambda'm \otimes En)$
 $RHS (m \otimes n) = \tilde{f} (Em \otimes \mu n + m \otimes En)$
 $= f(\lambda q^{2}, \mu) \mu Em \otimes n + f(\lambda, \mu q^{2}) m \otimes En$
 $(Recall EM_{\lambda} \subset Mq^{2}\lambda, FM_{\lambda} \subset Mq^{2}\lambda.)$
Equality follows from
 $f(\lambda, \mu) = \mu f(\lambda q^{2}, \mu) = \lambda f(\lambda, \mu q^{2})$

Theorem 3.14. Let
$$M, N \in \operatorname{Rep}(U)^{fd}$$
. The map
 $\Theta f \circ P : M \otimes N \longrightarrow N \otimes M$
is a natural isomorphism of U-modules.

Pf. Naturality is clear from our unstruction. The
map
$$\Theta f \circ P$$
 is linear and bijective because Θf and
P are so. We have that $\forall u \in U$, $m \in N$, $n \in N$,
 $P(u \cdot (m \otimes n)) = P \circ \Delta(u) (m \otimes n)$
 $= (P \circ \Delta) (u) P(m \otimes n)$
so $\Theta f \circ P(u \cdot (m \otimes n)) = (\Theta f \circ P \circ \Delta) (u) P(m \otimes n)$
 $(by prev. lemma) = \Delta(u) \circ \Theta f P(m \otimes n)$
 $= u \cdot (\Theta f \circ P(m \otimes n))$

Pf. Noturality is clear from our construction. The
map
$$\Theta^{f} \circ P$$
 is linear and bijective because Θ^{f} and
P are so. We have that $\forall u \in U$, $m \in N$, $n \in N$,
 $P(u \cdot (m \otimes n)) = P \circ \Delta(u)(m \otimes n)$
 $= (P \circ \Delta)(u) P(m \otimes n)$
so $\Theta^{f} \circ P(u \cdot (m \otimes n)) = (\Theta^{f} \circ P \circ \Delta)(u) P(m \otimes n)$
 $(by prov. lemma) = \Delta(u) \circ \Theta^{f} P(m \otimes n)$
 $= u \cdot (\Theta^{f} \circ P(m \otimes n))$
 \mathbb{R}
Rink. The condition of $f : \tilde{A} \times \tilde{A} \rightarrow k$, $\tilde{A} =$
 $\{\pm q^{\alpha} \mid a \in \mathbb{Z} \}$ that
 $f(\lambda, \mu) = \mu f(\lambda q^{2}, \mu) = \lambda f(\lambda, \mu q^{2})$
means that $\forall m, n \in \mathbb{Z}$ and $\varepsilon_{i}, \varepsilon_{2} \in \hat{\varepsilon} \pm 1 \}$
 $f(\varepsilon_{i} q^{2m}, \varepsilon_{2} q^{2n}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-2mn} f(\varepsilon_{i}, \varepsilon_{2})$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i} q, \varepsilon_{2})$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{2} q^{2n+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i}, \varepsilon_{2} q)$
 $f(\varepsilon_{i} q^{2m+1}, \varepsilon_{i} q^{2m+1}) = \varepsilon_{i}^{n} \varepsilon_{2}^{m} q^{-(2n+1)m} f(\varepsilon_{i} q) \varepsilon_{i} \varepsilon_{i})$
 $f(\varepsilon_{i} q) \varepsilon_{i} q^{2m+1}) = \varepsilon_{i}^{n} \varepsilon_{i}^{m} q^{-(2n+1)m} f(\varepsilon_{i} q) \varepsilon_{i} q)$
 $f(\varepsilon_{i} q) \varepsilon_{i} q^{2m+1}) = \varepsilon_{i}^{n} \varepsilon_{i}^{m} q^{-(2n+1)m} f(\varepsilon_{i} q) \varepsilon_{i} \varepsilon_{i})$

For example, if $f(q, q) = q^2$, then the final as imply that $f(q', q') = q^2$ and $f(q', q) = 1 = f(q, q^2)$.

We want to prove the following theorem.

Main theorem. Let
$$M, N, P \in \text{Rep}(u)^{\text{fd}}$$
. Suppose that
 $\int f(\lambda, \mu v) = f(\lambda, \mu) f(\lambda, v)$
 $\int f(\lambda \mu, v) = f(\lambda, v) f(\mu, v)$
for all reights λ, μ, v of these modules. Then the
following diagrams commute:

$$M \otimes (N \otimes P) \xrightarrow{id \otimes R} M \otimes (P \otimes N) \cong (M \otimes P) \otimes N$$

$$(P \otimes M) \otimes N$$

$$(P \otimes M) \otimes P \xrightarrow{id \otimes R} P \otimes (M \otimes N)$$

$$(M \otimes N) \otimes P \cong N \otimes (M \otimes P) \quad id \otimes R$$

$$(M \otimes N) \otimes P \qquad N \otimes (P \otimes M)$$

$$N \otimes (P \otimes M)$$

$$M \otimes (N \otimes P) \stackrel{R}{\longrightarrow} (N \otimes P) \otimes M$$

Before ve prove this, ve need some preliminaries.

(1) Recall that $\Theta_n = a_n F^n \otimes F^n \in U \otimes U$ where

$$a_n = (-1)^n q^{-n(n-1)/2} \frac{(q-q^{-1})^n}{[n]!} \in k$$

One can check that $a_n a_m = q_n^{nm} \begin{bmatrix} n+m \\ n \end{bmatrix} a_{n+m} \quad \forall m, n \ge 0 \quad (*)$ Consider in $U \otimes U \otimes U$ the elements $\theta'_n = q_n F^n \otimes K^n \otimes E^n, \quad \theta''_n = q_n F^n \otimes K^n \otimes E^n$ We claim that $(\Delta \otimes I) \theta_n = \sum_{i=0}^n (I \otimes \theta_{n-i}) \theta''_i$

This is the since

$$LHS = \sum_{i=0}^{n} a_{n} g^{i(n-i)} [\prod_{i}^{n}] F^{i} \otimes F^{n-i} K^{-i} \otimes E^{n}$$

$$RHS = \sum_{i=0}^{n} a_{i} a_{n-i} (I \otimes F^{n-i} \otimes E^{n-i}) (F^{i} \otimes K^{-i} \otimes E^{i})$$

So equality follows from (*). One shows similarly that

$$(1 \otimes \Delta) \otimes \otimes_{n} = \sum_{i=0}^{\infty} (\otimes_{n-i} \otimes 1) \otimes_{i}^{i}$$

The antiautomorphism τ satisfies
 $(\tau \otimes \tau) \otimes_{n} = \otimes_{n}$ and $(\tau \otimes \tau \otimes \tau) \otimes_{n}^{i} = \otimes_{n}^{i'}$
Hence we obtain

$$\begin{pmatrix} \tau \Delta \otimes I \end{pmatrix} \Theta_{n} = \sum_{i=0}^{\infty} \Theta_{i}^{\prime} (I \otimes \Theta_{n-i})$$

$$(I \otimes \tau \Delta) \Theta_{n} = \sum_{i=0}^{\infty} \Theta_{i}^{\prime\prime} (\Theta_{n-i} \otimes I)$$

(2) $\forall M, N, P \in Rep [U]^{fd}$, we can construct three automorphisms of $M \otimes N \otimes P$: $\Theta_{12}^{f} = \Theta^{f} \otimes I$, $\Theta_{23}^{f} = I \otimes \Theta^{f}$ $\Theta_{12}^{f} = [I \otimes P] \otimes \Theta_{12}^{f} (I \otimes P)$ Similarly we have $\Theta_{12}, \Theta_{13}, \Theta_{23}$ which are defined in the same way just without the f.

Also we have fiz, fiz, fiz, Ezz EAut (MONOP) in a smilar way: for example, f23 maps monop, with me MX, ne Nµ, pe Pu, to f(µu)mønøp. We define operators $\theta' = \sum_{n \ge 0} \theta'_n$ and $\theta'' = \sum_{n \ge 0} \theta''_n$

We claim that

$$\tilde{f}_{12} \circ \Theta_{13} = \Theta' \circ \tilde{f}_{12}$$
 (i)

$$f_{23} \circ \Theta_{B} = \Theta' \circ f_{23}$$
 (ii)

$$\tilde{f}_{12} \circ \tilde{f}_{13} \circ (1 \otimes \Theta) = (1 \otimes \Theta) \circ \tilde{f}_{12} \circ \tilde{f}_{23} \quad (iii)$$

$$\tilde{f}_{23} \circ \tilde{f}_{13} \circ (\Theta \otimes I) = (\Theta \otimes I) \circ \tilde{f}_{23} \circ \tilde{f}_{13} \quad (iv)$$

We will only show (i).

For
$$n = m \otimes n \otimes p \in M_{\lambda} \otimes N_{\mu} \otimes P_{\nu}$$
,
 $LHS(x) = \sum_{\substack{n \ge 0 \\ n \ge 0}} a_n f(\lambda q^{2n}, \mu) F^n \otimes n \otimes E^n p$
 $= \sum_{\substack{n \ge 0 \\ n \ge 0}} a_n \mu^n f(\lambda, \mu) F^n \otimes n \otimes E^n p$
 $= \sum_{\substack{n \ge 0 \\ n \ge 0}} a_n f(\lambda, \mu) F^n m \otimes K^n m \otimes E^n p$
 $= \Theta' \circ \tilde{f}_{12}(x) = RHS(x).$

Rmk. As a consequence of the above four equations, we can show that -P of of Af, Af. Of

$$\theta_{12}^{f} \circ \theta_{13}^{f} \circ \theta_{23}^{f} = \theta_{13}^{f} \circ \theta_{13}^{f} \circ \theta_{13}^{f}$$

as operators on M \otimes N \otimes P, for arbitrary N, N, P E
Ry (U)fd. In particular when $M = N = P$, we get
the quantum Yang - Baxter equation.

Now let's get back to proving the main theorem. Recall
on additional assumption that
$$\begin{cases} f(\lambda, \mu v) = f(\lambda, \mu) f(\lambda, v) \\ l f(\lambda, \mu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \mu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \mu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \mu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \mu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\mu, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\lambda, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\lambda, v) \\ f(\lambda, \nu, v) = f(\lambda, v) f(\lambda, v) \\ f(\lambda, v) = f(\lambda, v) f(\lambda, v) \\ f(\lambda, v) = f(\lambda, v$$

commutes.

Statch of proof. The two maps in the upper half are

$$(0 \otimes 1) \circ \tilde{f}_{12} \circ P_{12}$$
 followed by $(1 \otimes \theta) \circ \tilde{f}_{23} \circ P_{23}$.
Obviously, $\int P_{12} \circ (1 \otimes \theta) = \Theta_{13} \circ P_{12}$
 $P_{11} \circ \tilde{f}_{23} = \tilde{f}_{13} \circ P_{12}$
we also have $\tilde{f}_{11} \circ \Theta_{13} = \theta' \circ \tilde{f}_{12}$ by (i).
So the upper half can be written as
 $(\theta \otimes 1) \circ \theta' \circ \tilde{f}_{12} \circ \tilde{f}_{23} \circ P_{12} \circ P_{23}$
The lower half is the composition of a permutation of
factors lequal to $P_{12} \circ P_{23}$, a map \tilde{f}' that takes
 $x \in P_{X} \otimes (M_{14} \otimes N_{12})$ to $f(X, \mu_{12})x$, and finally
 $(1 \otimes \Lambda) \Theta$. Since $(1 \otimes \Lambda) \Theta = (\Theta \otimes 1) \Theta'$, we see
that the maps are equal iff

$$\tilde{f}' = \tilde{f}_{12} \circ \tilde{f}_{13}$$

Since RHS takes u to $f(\lambda,\mu)f(\lambda,\nu)u$, we see that
the maps are equal iff $f(\lambda,\mu\nu) = f(\lambda,\mu)f(\lambda,\nu)$.

$$f = f_{12} \circ f_{13}$$
Since RHS takes u to $f(\lambda, \mu) f(\lambda, \nu) u$, we see that
the maps are equal iff $f(\lambda, \mu\nu) = f(\lambda, \mu) f(\lambda, \nu)$

 $Rmk \cdot If f$ satisfies the 2 extra conditions for all
weights of the form g^{α} with $\alpha \in \mathbb{Z}$, then
 $f(g^{\alpha}, g^{b}) = f(g, g)^{\alpha b}$ $\forall \alpha, b \in \mathbb{Z}$.
Further, $f(g_{1}) f(g, 1) - f(g, 1) \Rightarrow f(g, 1) = 1$
 $f(q, g) f(q, g) = f(q, q^{2}) = g^{-1} f(q, 1) = g^{-1}$
so $f(g, g)$ is a square root of g^{-1} .
Suppose k contains a square root of g , denoted by $g^{1/2}$.
Then we can define
 $f(g^{\alpha}, g^{b}) = (g^{1/2})^{-\alpha b}$ $\forall \alpha, b \in \mathbb{Z}$.

$$f(q^{a}, g^{b}) = (q^{1/2})^{-ab}$$
 $\forall a, b \in \mathbb{Z}$

and then all conditions on f are satisfied for weights of this form.

However, we cannot extend f to all of
$$\tilde{A}$$
 this way.
From $f(-1,1) f(-1,1) = f(-1,1)$ we get $f(-1,1) = 1$.
From $f(-1,q^2) = (-1) f(-1,1)$ we get $f(-1,q^2) = -1$
From $f(-1,q^2) = f(-1,q) f(-1,q) = f(1,q)$ we get
 $f(-1,q^2) = 1$.

We say a U-module M is <u>of type 1</u> if all weights have the form ga with a EZ. In summary, if k contains a square mot of q, then we can choose f s.t. we get a commutativity constraint for all f.d. U-modules of type 1.