The commutativity constraint for U-modules.

Fix a field k and $q \in k \backslash\{0, \pm 1\}$.
Recall $U=U_{q}\left(s l_{2}\right)$:
As a k-algebra, $u=k\left[E, F, K, K^{-1}\right] / R$,
R generated by

$$
\begin{aligned}
& K K^{-1}=1=K^{-1} K \\
& K E K^{-1}=q^{2} E \\
& K F K^{-1}=q^{-2} F \\
& E F-F E=\frac{K-K^{-1}}{q-q-1}
\end{aligned}
$$

Last time, we also discussed a Hope algebra structure on U : we have algebra maps

$$
\begin{array}{ll}
\Delta: U \rightarrow U \otimes U & \varepsilon: U \rightarrow \\
\Delta(E)=E \otimes I+K \otimes E & \varepsilon(E)=0 \\
\Delta(F)=F \otimes K^{-1}+1 \otimes F & \varepsilon(F)=0 \\
\Delta(K)=K \otimes K & \varepsilon(K)=1
\end{array}
$$

and an anti-algebra/anti-coalg auto morphism

$$
\begin{aligned}
& S: U \rightarrow U \\
& S(E)=-K^{-1} E \\
& S(F)=-F K \\
& S(K)=K^{-1}
\end{aligned}
$$

$(U, \Delta, \varepsilon, S)$ is a Hop algebra, which makes Rep $(U)^{\text {fd }}$ a rigid monvidal (linear) category.

Also necall that if $\varphi: U \rightarrow U$ is an anti-alg automorphism then we can define a new Hopf alg structure $\left(U, \varphi_{\Delta}, \varphi_{\varepsilon}, \varphi_{S}\right)$ by

$$
\begin{gathered}
\varphi_{\Delta}=(\varphi \otimes \varphi) \circ \Delta \circ \varphi-1 \quad \varphi \varepsilon=\varepsilon \circ \varphi^{-1} \\
\varphi S=\varphi \circ S^{-1} \circ \varphi-1
\end{gathered}
$$

In particular, letting $\varphi=\tau$ the anti-automorphism defined from Chapter 1: $\tau(E)=E, \tau(F)=F, \tau(K)=K^{-1}$, we get $\tau \varepsilon=\varepsilon$ and

$$
\begin{array}{ll}
{ }^{\tau} \Delta(E)=E \otimes 1+K^{-1} \otimes E & { }^{{ }^{\tau}} S(E)=-K E \\
{ }^{{ }^{\tau}} \Delta(F)=F \otimes K+1 \otimes F & { }^{\tau} S(F)=-F K^{-1} \\
{ }^{{ }^{\tau} \Delta(K)}=K \otimes K & { }^{\tau} S(K)=K^{-1}
\end{array}
$$

Today, we want to construct a braiding on $\operatorname{Rep}(U)^{\mathrm{fd}}$, ie. natural isomorphisms of f.d. U-modules $M \otimes N \cong$ $N \otimes M$ satisfying two hexagon identities. It turns out that we can only accomplish this goal for a subset of Rep $(u) f d$, using a "generalized R-matrix".

Assume q is not a not of unity and char (k) $=2$.

Def. Set for all integers $n \geqslant 0$

$$
\theta_{n}=a_{n} F^{n} \otimes E^{n} \in U \otimes U
$$

where

$$
a_{n}=(-1)^{n} q^{-n(n-1) / 2} \frac{\left(q-q^{-1}\right)^{n}}{[n]!} \in k
$$

In particular, $\theta_{0}=1 \otimes 1, \theta_{1}=-\left(q-q^{-1}\right) F \otimes E$

$$
\theta_{-1}=0
$$

a_{n} satisfies the recursion

$$
a_{n}=-q^{-(n-1)} \frac{q-q^{-1}}{[n]} a_{n-1}
$$

lemma. $\forall n \geqslant 0$,
(1)

$$
\begin{aligned}
& (E \otimes 1) \theta_{n}+(K \otimes E) \theta_{n-1} \\
& =\theta_{n}(E \otimes 1)+O_{n-1}\left(K^{-1} \otimes E\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& (1 \otimes F) \theta_{n}+\left(F \otimes K^{-1}\right) \theta_{n-1} \\
& \quad=\theta_{n}(1 \otimes F)+\theta_{n-1}(F \otimes K)
\end{aligned}
$$

(3) $(K \otimes K) \theta_{n}=\theta_{n}(K \otimes K)$.

Pf. Part (3) follows from an earlier formula

$$
(K \otimes K) u=q^{2 n} u(K \otimes K), \quad u \in(U \otimes u)_{n}
$$

here $\theta_{n}=a_{n} F^{n} \otimes E^{n} \in(u \otimes u)_{0}$. Parts $(1)+(2)$ follow from elementary calculations.
let M and $N \in \operatorname{Rep}(u)^{f d}$. Recall that E and F act nilpotently on M and N, hence we can define a linear transformation

$$
\theta=\theta_{M, N}: M \otimes N \rightarrow N \otimes M
$$

by $\theta=\sum_{n \geqslant 0} \theta_{n}$. (Note $\theta \notin U \otimes U$).
The formulas from previous lemma imply

$$
\Delta(u) \cdot \theta=\theta \cdot{ }^{\tau} \Delta(u) \quad \forall u \in u
$$

Since $F \otimes E$ acts nilpotently on $M \otimes N$, we can find a basis s.t. The matrix of $F \otimes E$ is strictly lower triangular. Each θ_{n} is (up to scalar) equal to $(F \otimes E)^{n}$, so for $n>0$ its matrix is strictly upper triangular.
Since $\theta_{0}=$ id and $\theta=\sum_{n \geqslant 0} \theta_{n}$ we see that $\theta_{M, N}$ is bijective.

Recall that for $M \in \operatorname{Rep}(U)^{f d}$, we have

$$
M=\underset{\lambda \in k}{\oplus} M_{\lambda}
$$

where $M_{\lambda}=\left\{m \in M^{\lambda \in k}: K m=\lambda m\right\}$.
Further, the (non-zero) weights are contained in

$$
\tilde{\Lambda}=\left\{ \pm q^{a} \mid a \in \mathbb{Z}\right\}
$$

Suppose we have a map $f: \tilde{\Lambda} \times \tilde{\Lambda} \rightarrow k^{x}$ s.t.

$$
\begin{array}{r}
f(\lambda, \mu)=\lambda f\left(\lambda, \mu q^{2}\right)=\mu f\left(\lambda q^{2}, \mu\right) \\
\forall \lambda, \mu \in \tilde{\Omega}
\end{array}
$$

(Well see why we want this map soon)
Then we can define, $\forall M, N \in \operatorname{Rep}(u) f d$, a bijective linear transformation $\tilde{f}: M \otimes N \rightarrow M \otimes N$ by

$$
\tilde{f}\left(m \otimes m^{\prime}\right)=f(\lambda, \mu) m \otimes n, m \in M_{\lambda}, n \in N_{\mu}
$$

Set

$$
\theta^{f}=\theta \cdot \tilde{f}
$$

Lemma. $\Delta(u) \circ \theta^{f}=\theta^{f} \cdot\left(P_{u, u} \circ \Delta\right)(u)$ Here $P_{v, W}: V \otimes W \rightarrow W \otimes V$ denote the switch $\operatorname{map} v \omega \longmapsto w \otimes 0$.

Pf. Recall that

$$
\begin{aligned}
& \Delta(u) \circ \theta=\theta \cdot{ }^{\tau} \Delta(u) \\
\Rightarrow & \Delta(u) \cdot \theta^{f}=\theta \cdot{ }^{\tau} \Delta(u) \circ \tilde{f}
\end{aligned}
$$

and so it suffices $T S$ that

$$
{ }^{\tau} \Delta(u) \cdot \tilde{f}=\tilde{f} \circ(p \circ \Delta)(u)
$$

Only need to check for generators E, F, K, ie.

$$
\begin{align*}
\left(E \otimes \backslash+K^{-1} \otimes E\right) \circ \tilde{f} & =\tilde{f} \circ(E \otimes K+1 \otimes E) \tag{1}\\
(I \otimes F+F \otimes K) \circ \tilde{f} & =\tilde{f} \circ\left(K^{-1} \otimes F+F \otimes I\right) \tag{2}\\
(K \otimes K) \circ \tilde{f} & =\tilde{f} \circ(K \otimes K) \tag{3}
\end{align*}
$$

Formula (3) is clear since \tilde{f} stabilizes the weight spaces. Frit 2 formulas are similar, well show (1): $\forall m \in M_{\lambda}$ and $n \in N_{\mu}, \quad \lambda, \mu \in k$,

$$
\begin{aligned}
& \operatorname{LHS}(m \otimes n)=f(\lambda, \mu)\left(E_{m} \otimes n+\lambda^{-1} m \otimes E_{n}\right) \\
& \text { RUS }(m \otimes n)=\tilde{f}\left(E_{m} \otimes \mu n+m \otimes E_{n}\right) \\
& =f\left(\lambda q^{2}, \mu\right) \mu E_{m} \otimes n+f\left(\lambda, \mu q^{2}\right) m \otimes E_{n}
\end{aligned}
$$

(Recall $E M_{\lambda} \subset M q^{2} \lambda, F M_{\lambda} \subset M q^{-2} \lambda$.)
Equality follows from

$$
f(\lambda, \mu)=\mu f\left(\lambda q^{2}, \mu\right)=\lambda f\left(\lambda, \mu q^{2}\right)
$$

Theorem 3.14. Let $M, N \in \operatorname{Rep}(U)^{f d}$. The map $\theta f \circ P: M \otimes N \rightarrow N \otimes M$ is a natural isomorphism of U-modules.

Pf. Naturality is clear from our construction. The $\operatorname{map} \theta^{f} \circ P$ is linear and bijective because θ^{f} and P are so. We have that $\forall u \in U, m \in M, n \in N$,

$$
\begin{aligned}
P(u \cdot(m \otimes n)) & =P \cdot \Delta(u)(m \otimes n) \\
& =(P \circ \Delta)(u) P(m \otimes n)
\end{aligned}
$$

so $\theta^{f} \circ p(u \cdot(m \otimes n))=\left(\theta^{f} \circ p \circ \Delta\right)(u) P(m \otimes n)$
(by prev. lemma)

$$
\begin{aligned}
& =\Delta(u) \circ \theta^{f} P(m \otimes n) \\
& =u \cdot\left(\theta^{f} \circ p(m \otimes n)\right)
\end{aligned}
$$

Rok. The condition of $f: \tilde{\Lambda} \times \tilde{\Lambda} \rightarrow k, \tilde{\Lambda}=$ $\left\{ \pm q^{a} \mid a \in \mathbb{Z}\right\}$ that

$$
f(\lambda, \mu)=\mu f\left(\lambda q^{2}, \mu\right)=\lambda f\left(\lambda, \mu q^{2}\right)
$$

means that $\forall m, n \in \mathbb{Z}$ and $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$

$$
\begin{aligned}
& f\left(\varepsilon_{1} q^{2 m}, \varepsilon_{2} q^{2 n}\right)=\varepsilon_{1}^{n} \varepsilon_{2}^{m} q^{-2 m n} f\left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& f\left(\varepsilon_{1} q^{2 m+1}, \varepsilon_{2} q^{2 n}\right)=\varepsilon_{1}^{n} \varepsilon_{2}^{m} q^{-(2 m+1) n} f\left(\varepsilon_{1} q, \varepsilon_{2}\right) \\
& f\left(\varepsilon_{1} q^{2 m}, \varepsilon_{2} q^{2 n+1}\right)=\varepsilon_{1}^{n} \varepsilon_{2}^{m} q^{-(2 n+1) m} f\left(\varepsilon_{1}, \varepsilon_{2} q\right) \\
& f\left(\varepsilon_{1} q^{2 m+1}, \varepsilon_{2} q^{2 n+1}\right)=\varepsilon_{1}^{n} \varepsilon_{2}^{m} q^{-(2 n m+m+n)} f\left(\varepsilon_{1} q, \varepsilon_{2} q\right)
\end{aligned}
$$

Hence f is completely decided by the 16 arbitrary choices of f on the RHS.
For example, if $f(q, q)=q^{-1}$, then the formulas imply that $f\left(q^{-1}, q^{-1}\right)=q^{-1}$ and $f\left(q^{-1}, q\right)=1=f\left(q, q^{-1}\right)$.

We want to prove the following theorem.

Main theorem. Let $M, N, P \in \operatorname{Rep}(u)^{f d}$. Suppose that

$$
\left\{\begin{array}{l}
f(\lambda, \mu v)=f(\lambda, \mu) f(\lambda, v) \\
f(\lambda \mu, v)=f(\lambda, v) f(\mu, v)
\end{array}\right.
$$

for all weights λ, μ, v of these modules. Then the following diagrams commute:

112

$$
\begin{array}{r}
(M \otimes N) \otimes P \xrightarrow{R} P \otimes(M \otimes N) \\
(M \otimes N) \otimes P^{R \otimes i d}(N \otimes M) \otimes P \cong N \otimes(M \otimes P) J_{12}^{i d \otimes R} \\
N \otimes
\end{array}
$$

$$
M \otimes(N \otimes P) \xrightarrow{R}(N \otimes P) \otimes M
$$

Before we prove this, we need some preliminaries.
(1) Recall that $\theta_{n}=a_{n} F^{n} \otimes E^{n} \in U \otimes U$
where

$$
a_{n}=(-1)^{n} q^{-n(n-1) / 2} \frac{\left(q-q^{-1}\right)^{n}}{[n]!} \in k
$$

One can check that

$$
a_{n} a_{m}=q^{n m}\left[\begin{array}{c}
n+m \tag{*}\\
n
\end{array}\right] a_{n+m} \quad \forall m, n \geqslant 0
$$

Consider in $U \otimes U \otimes U$ the elements

$$
\theta_{n}^{\prime}=a_{n} F^{n} \otimes K^{n} \otimes E^{n}, \quad \theta_{n}^{\prime \prime}=a_{n} F^{n} \otimes K^{-n} \otimes E^{n}
$$

We claim that

$$
(\Delta \otimes 1) \theta_{n}=\sum_{i=0}^{n}\left(1 \otimes \theta_{n-i}\right) \theta_{i}^{\prime \prime}
$$

This is true since

$$
\begin{aligned}
& L H S=\sum_{i=0}^{n} a_{n} q^{i(n-i)}\left[\begin{array}{l}
n \\
i
\end{array}\right] F^{i} \otimes F^{n-i} K^{-i} \otimes E^{n} \\
& R H S=\sum_{i=0}^{n} a_{i} a_{n-i}\left(1 \otimes F^{n-i} \otimes E^{n-i}\right)\left(F^{i} \otimes K^{-i} \otimes E^{i}\right)
\end{aligned}
$$

So equality follows from (*). One shows similarly that

$$
(1 \otimes \Delta) \theta_{n}=\sum_{i=0}^{n}\left(\theta_{n-i} \otimes 1\right) \theta_{i}^{\prime}
$$

The antiautomorphism τ satisfies

$$
(\tau \otimes \tau) \theta_{n}=\theta_{n} \text { and }(\tau \otimes \tau \otimes \tau) \theta_{n}^{\prime}=\theta_{n}^{\prime \prime}
$$

Hence we obtain

$$
\begin{aligned}
& \left(\tau_{\Delta} \otimes 1\right) \theta_{n}=\sum_{i=0}^{n} \theta_{i}^{\prime}\left(1 \otimes \theta_{n-i}\right) \\
& (1 \otimes \tau \Delta) \theta_{n}=\sum_{i=0}^{n} \theta_{i}^{\prime \prime}\left(\theta_{n-i} \otimes 1\right)
\end{aligned}
$$

(2) $\forall M, N, P \in \operatorname{Rep}(U)^{f d}$, we can construct three automorphisms of $M \otimes N \otimes P$:

$$
\begin{aligned}
& \theta_{12}^{f}=\theta^{f} \otimes 1, \quad \theta_{23}^{f}=1 \otimes \theta^{f} \\
& \theta_{13}^{f}=(1 \otimes p) \theta_{12}^{f}(1 \otimes p)
\end{aligned}
$$

Similarly we have $\theta_{12}, \theta_{13}, \theta_{23}$ which ane defined in the same way just without the f.

Also we have $\tilde{f}_{12}, \tilde{f}_{13}, \tilde{f}_{23} \in \operatorname{Aut}(M \otimes N \otimes P)$ in a similar way: for example, \tilde{f}_{23} maps $m \otimes n \otimes p$, with $m \in M_{\lambda}, n \in N_{\mu}, p \in P_{\nu}$, to $f(\mu, 0) m \otimes n \otimes p$.
We define operators

$$
\theta^{\prime}=\sum_{n \geqslant 0} \theta_{n}^{\prime} \quad \text { and } \theta^{\prime \prime}=\sum_{n \geqslant 0} \theta_{n}^{\prime \prime}
$$

We claim that

$$
\begin{align*}
\tilde{f}_{12} \circ \theta_{13} & =\theta^{\prime} \cdot \tilde{f}_{12} \tag{i}\\
\tilde{f}_{23} \circ \theta_{13} & =\theta^{\prime \prime} \circ \tilde{f}_{23} \tag{ii}\\
\tilde{f}_{12} \circ \tilde{f}_{13} \circ(1 \otimes \theta) & =(1 \otimes \theta) \circ \tilde{f}_{12} \circ \tilde{f}_{23} \tag{iii}\\
\tilde{f}_{23} \circ \tilde{f}_{13} \circ(\theta \otimes 1) & =(\theta \otimes 1) \circ \tilde{f}_{23} \circ \tilde{f}_{13} \tag{iv}
\end{align*}
$$

We will only show (i).

$$
\begin{aligned}
\text { For } x & =m \otimes n \otimes p \in M_{\lambda} \otimes N_{\mu} \otimes P_{v}, \\
\operatorname{LHS}(x) & =\sum_{n \geqslant 0} a_{n} f\left(\lambda q^{-2 n}, \mu\right) F^{n} m \otimes n \otimes E^{n} p \\
& =\sum_{n \geqslant 0} a_{n} \mu^{n} f(\lambda, \mu) F_{m}^{n} \otimes n \otimes E^{n} p \\
& =\sum_{n \geqslant 0} a_{n} f(\lambda, \mu) F^{n} m \otimes k^{n} m \otimes E^{n} p \\
& =\theta^{\prime} \cdot \tilde{f}_{12}(x)=\operatorname{RHS}(x) .
\end{aligned}
$$

Rok. As a consequence of the above four equations, we can show that

$$
\theta_{12}^{f} \cdot \theta_{13}^{f} \cdot \theta_{23}^{f}=\theta_{23}^{f} \cdot \theta_{13}^{f} \cdot \theta_{12}^{f}
$$

as operators on $M \otimes N \otimes P$, for arbitrary $M, N, P \in$ Rep (U)fd. In particular when $M=N=P$, we get the quantum $y_{\text {Ing - Baxter equation. }}$

Now let's get back to proving the main theorem. Recall an additional assumption that

$$
\left\{\begin{array}{l}
f(\lambda, \mu v)=f(\lambda, \mu) f(\lambda, v) \\
f(\lambda \mu, v)=f(\lambda, v) f(\mu, v)
\end{array}\right.
$$

for all weights λ, μ, v of $M, N, p \in \operatorname{Rep}(u)^{f d}$.
We will only show the first diagram
$M \otimes(N \otimes P)^{i d}$
$M \otimes(P \otimes N) \cong(M \otimes P) \otimes N$

112

$$
\begin{aligned}
& D \text { Raid } \\
& (P \otimes M) \otimes N \\
&
\end{aligned}
$$

$$
(M \otimes N) \otimes P \quad \xrightarrow{R} P \otimes(M \otimes N)
$$

commutes.

Sketch of proof. The two maps in the upper half are $(\theta \otimes 1)$ - $\tilde{f}_{12} \circ P_{n}$ followed by $(1 \otimes \theta) \cdot \tilde{f}_{23} \circ P_{23}$. Obviously, $\left\{\begin{array}{l}P_{12} \circ(1 \otimes \theta)=\theta_{13} \circ P_{12} \\ P_{12} \circ \tilde{f}_{23}=\tilde{f}_{13} \circ P_{12}\end{array}\right.$
we also have $\tilde{f}_{12} \circ \theta_{13}=\theta^{\prime} \circ \tilde{f}_{12}$ by (i).
So the upper half can be written as

$$
(\theta \otimes 1) \circ \theta^{\prime} \circ \tilde{f}_{12} \circ \tilde{f}_{23} \circ p_{12} \circ p_{23}
$$

The lower half is the composition of a permutation of factors (equal to $P_{12} \circ P_{23}$), a map \tilde{f}^{\prime} that takes $x \in P_{\lambda} \otimes\left(M_{\mu} \otimes N_{0}\right)$ to $f(\lambda, \mu v) x$, and finally $(1 \otimes \Delta) \theta$. Since $(1 \otimes \Delta) \theta=(\theta \otimes 1) \theta^{\prime}$, we see that the maps ane equal iff

$$
\tilde{f}^{\prime}=\tilde{f}_{12} \cdot \tilde{f}_{13}
$$

Since RHS talus x to $f(\lambda, \mu) f(\lambda, 0) x$, we see that the maps are equal iff $f(\lambda, \mu v)=f(\lambda, \mu) f(\lambda, v)$.

Rmk. If f satisfies the 2 extra conditions for all weights of the form q^{a} with $a \in \mathbb{Z}$, then

$$
f\left(q^{a}, q^{b}\right)=f(q, q)^{a b} \quad \forall a, b \in \mathbb{Z} .
$$

Further, $f(q, 1) f(q, 1)=f(q, 1) \Rightarrow f(q, 1)=1$

$$
f(q, q) f(q, q)=f\left(q, q^{2}\right)=q^{-1} f(q, 1)=q^{-1}
$$

so $f(q, q)$ is a square not of q^{-1}.
Suppose k contains a square not of q, denoted by $q^{1 / 2}$. Then we can define

$$
f\left(q^{a}, q^{b}\right)=\left(q^{1 / 2}\right)^{-a b} \quad \forall a, b \in \mathbb{Z}
$$

and then all conditions on f are satisfied for weights of this form.

However, we cannot extend f to all of $\tilde{\Lambda}$ this way. From $f(-1,1) f(-1,1)=f(-1,1)$ we get $f(-1,1)=1$.
From $f\left(-1, q^{2}\right)=(-1) f(-1,1)$ we get $f\left(-1, q^{2}\right)=-1$
From $f\left(-1, q^{2}\right)=f(-1, q) f(-1, q)=f(1, q)$ we get

$$
f\left(-1, q^{2}\right)=1
$$

We say a U-module M is of type 1 if all weights have the form q^{a} with $a \in \mathbb{Z}$. In summary, if k contains a square not of q, then we can choose f s.t. We get a commutativity constraint for all f.d. U-modules of type 1.

