Before diving into rep'n theory of f.d. s.s. Lie algebras, let's necall some facts about the Lie algebras themselves. let L be a f.d. s.s. Lie algebra lover C or some alg. closed field k). Then L has a maximal total subalg. Fix one such algebra $T \subset L$, then $L = T \oplus \bigoplus L_X$ where $I = \{ X \in T^* \setminus \{ 0 \} : L_X \neq 0 \}$ is the set whose elements are called roots, and $L_X = \{ n \in L : [t, n] = X(t) \times \forall t \in T \}$ Note. $[L_X, L_p] \leq L_X + p$.

Some facts about roots.
(1) let
$$\langle -, - \rangle$$
 denote the (dual) killing form on T*.
 $\forall v \in T^* \setminus \{0\}$, let $v' = \frac{2v}{\langle v, v \rangle}$, then
 $\langle \mu, v' \rangle = \frac{2 \langle \mu, v \rangle}{\langle v, v \rangle} = \frac{2}{\|v\|^2} \langle \mu, v \rangle$

The new bracket $\langle -, -^{\vee} \rangle$ is linear only in the 1st variable and is intensitive to rescaling the inner polt $\langle -, -\rangle$. With respect to this new bracket, $\forall d, p \in \overline{P}, \quad \langle d, p^{\vee} \rangle \in \overline{Z}$ $\subseteq Cartan integers$ Furthermore, (.) $kd \cap \overline{\Psi} = \{\pm d\}$ (.) $\forall a, \beta \in \overline{\Phi}, a - \langle a, \beta' \rangle \beta \in \overline{\Phi}$ (2) $(sl_2 - triples)$. Let $x \in \overline{\Sigma}$. Then $\dim_{\mathbb{R}} l_{x} = 1$ and [Ld, L-2] = khd, where $h_{d} \in T$ s.t. $\langle \beta, d' \rangle = \beta(h_{d})$ $(Explicitly, h_d = \frac{2 t_d}{d(t_d)}, where t_d \in T \iff d \in T^*)$ Moreover,

 $s_{\lambda} = L_{-\lambda} \oplus kh \oplus L_{\lambda}$ is a lie subalg of $L s.t. s_{\lambda} \cong sl_{2}$, with h, a hesly.

(3) There is a finite set $\Delta = \{ d_1, ..., d_n \}$ of roots that forms a basis for T* = k" and s.t. YBE I,

B = E tod w/ all to E Z+ or all to E - Z+. The roots in Δ are called simple roots. They give rise to a partition of I as > regative roots $\overline{\Psi} = \overline{\Psi}_{+} \cup \overline{\Psi}_{-}$ positive mots

There is a partial order on T* given by $\mu \leq \nu \Leftrightarrow \nu - \mu \in \mathbb{Z}_{+} = \mathbb{Z}_{+} \Delta = \oplus \mathbb{Z}_{+} \alpha_{i}$ With this partial order, we can unite $\overline{\Psi}_{+} = \{ \mathcal{A} \in \overline{\Psi} \mid \mathcal{A} > 0 \}$ 重-= { x e 重 | x × 0 } The root space decomposition takes the form $N \pm = \bigoplus_{x \in \Phi+} L x$ $L = N_{-} \oplus T \oplus N_{+}$

where T is abelian and N_{\pm} are nilpotent. This is called the mangular decomposition of L. For the classical lie algs, N_{\pm} consist of shirtly upper/lower triangular matrices. We will also define the positive and negative Borel rubalg to be

$$B \pm = T \oplus N \pm .$$

(4) Fix a basis $\Delta = \{ \alpha_1, ..., \alpha_n \}$ of simple roots of \mathbf{I} . Define the root lattice

$$R = \mathbb{Z} \overline{P} = \sum_{x \in \overline{P}} \mathbb{Z} d = \bigoplus_{i=1}^{n} \mathbb{Z} d_i \cong \mathbb{Z}^{\oplus n}$$

and the weight lattice

$$\Delta = \{ \lambda \in T^* | \langle \lambda, \alpha' \rangle \in \mathbb{Z} \; \forall \alpha \in \mathbb{P} \}$$

$$= \{ \lambda \in T^* | \langle \lambda, \alpha' \rangle \in \mathbb{Z} \; \forall \alpha \in \Delta \}$$

$$\int_{\Omega} vot obvious ! Exercise 7.2.3 in Lorenz's book$$

We have $R \leq 1$

The weights λ_i s.t. $\langle \lambda_i, d_j \rangle = \delta_{i,j}$ are called the fundamental weights. They form a Z-basis for Λ , i.e. $\Lambda = \bigoplus_{i=1}^{\infty} Z \lambda_i \cong Z^{\otimes n}$

Next, we define

$$\Delta t = \left\{ \begin{array}{l} \lambda \in T^{*} \\ = \end{array} \right\} \langle \lambda, d_{i}^{*} \rangle \in \mathbb{Z} + \forall d_{i} \in \Delta \left\}$$

$$= \bigoplus_{i=1}^{n} \mathbb{Z} + \lambda_{i}$$

The weights $\lambda \in A_{+}$ are called the dominant weights

THE WEYL GROUP

Let
$$\overline{\Phi}$$
 be the set of roots and fix a basis Δ .
For each $\chi \in \overline{\Phi}$, let $s_{\chi} \colon T^{\star} \to T^{\star}$
 $S_{\chi}(\mu) = \mu - \langle \mu, \chi^{\vee} \rangle \chi$
Can check that s_{χ} is the inflection through the hyperplane
orthogonal to χ .

Let
$$W = \langle S_{\alpha} | \alpha \in \Phi \rangle \subseteq GL(T^*)$$

 W is called the Weyl group of Φ .

Example (sl2)
Recall that
$$sl_2 = kf \oplus kh \oplus ke$$

 $f = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $[h, e] = de \quad [h, f] = -2f \qquad [e, f] = h$
 $kh = a \text{ maximal total subalg}$
 $(kh)^* \cong k, ie. \text{ functionals on } kh \text{ act as scalars}$
With this identification, $\overline{P} = \{ \pm 2 \}$ since
 $ke = l_2 = f \times e sl_2 | Lh, \pi] = d\pi \{ \}$
 $kf = l_{-2} = \{ \times e sl_2 | Lh, \pi] = -d\pi \}$

The not lattice is 22. Choose
$$\Delta = \{2\}$$
, so $\overline{\Psi}_{+} = \{2\}$
and $\overline{\Psi}_{-} = \{-2\}$. Hence $N_{+} = L_{2} = ke$
 $N_{-} = L_{-2} = kf$
The fund weight λ satisfies $\langle \lambda, 2^{\vee} \rangle = 1$
 $\langle \lambda, \frac{2}{4} 2 \rangle = \langle \lambda, 1 \rangle$
so $\lambda = 1$. The weight lattice is 2. The weyle group \mathcal{W}
is generated by nellection s_{2} of order 2 so $\mathcal{W} \cong 2/22$,
and operates on $T^{*} = k$ by multiplication by ± 1 .
The partial order $\leq m$ $T^{*} = k$ is given by
 $\mu \leq \lambda \iff \lambda - \mu \in 22t$.

let L be a f.d. s.s. Lie algebra. If
$$V \in \operatorname{Rep}(L)^{fd}$$
,
then we have a decomposition
 $V \cong \bigoplus V_{\lambda}$ (X)
 $\chi \in T^*$
where $V_{\lambda} = \{ \chi \in V : t. \chi = \lambda(t) \mid \chi \forall t \in T \}$ is the λ -
weight space for V.
Easy check : $L_{X} \cdot V_{\lambda} \subseteq V_{X+\lambda}$.

General result. (a) The weights
$$\lambda$$
 occuring in (*) belong
to Δ , is they appear in the weight lattice.
(b) If λ is a weight of V, then the orbit $W\lambda$ consist
of weights of V, all having the same multiplicity:
dimp $V_{\lambda} = \dim_k V_{W\lambda}$ $\forall w \in W$.

We will use this to calculate all weights appearing in certain f.d. representations later.

$$\frac{E \times ample}{V} (Rep(sl_2))$$
Let V be a follower of sl_2 of dimil n, and consider
$$V \equiv \bigoplus_{\lambda \in T^*} V_{\lambda} \cong \bigoplus_{\lambda \in k} V_{\lambda}$$

Note (ke)
$$\cdot V_{\lambda} = L_2 \cdot V_{\lambda} \subseteq V_{\lambda+2}$$

(kf) $\cdot V_{\lambda} = L_{-2} \cdot V_{\lambda} \subseteq V_{\lambda-2}$

In particular, if λ is maximal among all weights wrt \leq , and $0 \neq v \in V_{\lambda}$, then $e \cdot v = 0$ and v generates all of V. thence the vectors $f^i \cdot v$, $0 \leq i \leq n-1$, forms a basis for V. Using this, we can figure out that the weights are n-1, n-3, ..., -(n-3), -(n-1)all occurring with multiplicity 1. A class of representatives of f.d. imaps are given by $\operatorname{Sym}^m(k^2)$ where k^2 is the natural rep'n, $\forall m \geq 1$

Note that in this case, the finite dirich irreps only depend on the maximal weight. This remains the for general f.d.s.s. Lie algebras.

let $V \in \text{Rep}(L)^{\text{fd}}$. We say that V is a highest weight representation (with highest weight λ) if X is a maximal weight (wrt \leq) of all weights occuring in the weight decomposition $V = \bigoplus V_{\mu}$, and $\exists 0 \neq v \in V_{\chi}$ e.t. vgenerates all of V (such a v is called a maximal vector).

A class of representatives of f.d. irreps is given by the Verma modules $V(\lambda)$, $\lambda \in \Lambda_+$.

Some info about V(X):

(1) To compute which weight appears in
$$V(\lambda)$$
, first
compute all dominant weights $\leq \lambda$, then use Weyl group
to get the rest. (lorenz' Proposition 7.16).
(a) The multiplicity $m_{\lambda}(\mu)$ of a weight μ is given
by Koctant's multiplicity formula
 $m_{\lambda}(\mu) = \sum_{e \in V} (-1)^{e(e)} \cup (e(\lambda t p) - (\mu t p))$
Kostant's partition function
(3) The dimension of $V(\lambda)$ is given by the Weyl dim

fremula: dim $(V(\lambda)) = \prod_{\alpha \neq 0} \frac{\langle \lambda \neq \rho, \alpha \rangle}{\langle \rho, \alpha \rangle}$.

(4) The multiplicity
$$M_{\lambda, \mathcal{T}}^{M}$$
 of $V(\mu)$ in $V(\lambda) \otimes V(\mathcal{T})$
is given by the Racah-Speicer formula
 $M_{\lambda, \mathcal{T}}^{M} = \sum_{\sigma \in \mathcal{W}} (-1)^{e(\sigma)} m_{\mathcal{T}} (\sigma(\mu t \rho) - (\lambda t \rho)).$

Example From the Dynkin diagram of B2
we have 2 simple roots
$$d_1$$
, d_2 w/ || d_1 || > || d_2 ||
One computes angle $(d_1, d_2) = 135$ degrees
and $\frac{||d_1||}{||d_2||} = \sqrt{2}$.
and can verify that the fund weights are
 $\lambda_1 = \frac{\alpha_1}{2} + d_2$, $\lambda_2 = d_1 + d_2$.

Since $2\lambda_2 \in \Lambda_1$, we can consider $V = V(2\lambda_2)$. The dominant weights $\leq 2\lambda_2$ are $2\lambda_2$, λ_1 , λ_2 , 0, which are rectangular nodes whose multiplicities inside are computed using (2). The remainder of the weight spaces in circular nodes are computed using the Weyl group.