20201013

Tuesday, 13 October 2020 05:00

Definition: Let k be a field, fix qek with
$$q \neq 0$$
, $q^2 \neq 1$. Then $Uq(sl_2)$ is the amountive number
algebra over k generated by E, F, K, K' with relations
(R1) $KK' = 1 = K'K$.
(R2) $KEK' = q^2E$
(R3) $KFK' = q^2F$.
(R4) $EF-FE = \frac{k-K'}{q-q^{-1}}$
We may above $U := Uq(sl_2)$.

Lemma: Let
$$n = \sum_{r \in IN} F'h_r E' \in U_0$$
, then it is central in U if and only if:
 $h_r - \chi_2(h_r) = [r+i][K; -r]h_{r+i}$ for all r≥0

Definition Set TT. Vo - V°. $\sum_{r\in N} F'h_r E' \mapsto h_o$ Remark: We have $Kur(\pi) = F V_0 E$, and π is an algebra homomorphism since the Kernel is a

two sided ideal.
Lemma: If
$$\underline{\gamma}$$
 is ust a root of unity, then π induces an injective homomorphism from $\mathcal{Z}(U)$ to U^{0} .
Roof. The Lemma above says that here is determined by hr, since $\underline{\gamma}$ not a root of unity implies
 $[r+i][K;-r] \pm 0$, and since U^{0} is an integral domain. Hence all hr are inductively determined
by $h_{0} = \pi(M)$, proving injectivity.

Lemma: Suppose that <u>f</u> is not a root of unity Let nEV be untral and write X10 T(M) = <u>Z</u> aik' with ai E k almost all zero. Then ai = a_i for all iE7L. PP

Π.

Proof: We have
$$\pi(m) = \sum_{i \in \mathcal{H}} a_i q^i k^i$$
, hence: $m = \sum_{i \in \mathcal{H}} a_i q^i k^i + \sum_{i \in \mathcal{H}} F'h_r E'$ for suitable $h_r E U^\circ$.
Then m acts on $M(k)$ as multiplication by $\sum_{i \in \mathcal{H}} a_i q^i \lambda^i$, since it acts like that on the guerator mo.
In pochimlar, m acts as multiplication by $\sum_{i \in \mathcal{H}} a_i q^{(n+1)i}$ on $M(q^n)$ for any $m \in \mathcal{H}$. We saw that for
 $m \ge 0$ there is a submodule isomorphice to $M(q^{n-2})$ in $M(q^n)$, so since m has to act by the same
scalar on both modules.

$$\sum_{i\in\mathcal{N}} a_i q^{(n+1)i} = \sum_{i\in\mathcal{N}} a_i q^{-(n+1)i}, \text{ meaning} \sum_{i\in\mathcal{N}} a_i q^i = \sum_{i\in\mathcal{N}} a_i q^{i} = \sum_{i\in\mathcal{N}} a_i q^{i}$$
for all $n\in\mathcal{N}$. Denote by $\Psi_i \cdot \mathcal{N} \longrightarrow \mathbb{R}^{\times}$ the group homomorphism from \mathcal{N} to the public bies

$$\begin{array}{c} \left| \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$$

hr-K_2(hr) =
$$\sum_{s \in 7L} ar, s(1-q^{2s})k^s$$
 implies that $ar, s = 0$ or $1 = q^{2s}$ for all $s \in 7L$.
Since q is a primitive l-th cost of unity, lodd, we have $q^{2s} = 1$ for $0 < s < l$, hence $ar, s = 0$ for
there s . All other ar, s were already equal to 0 , so indeed $hr = 0$.
Remark: We have seen that E^l , F^l , and k^l are algebraically independent over k by the PBW-type
basis. One can show that C is integral over the subalgebra gueranted by E^l , F^l , k^l , k^l .