

Nov_25

SWAG Fall 2020 - Lecture 14: Induced representation 11. Induced representation GZH. Review for last time. **Definition 11.1.** Given (V, ρ) of G, we can consider the representation of H given by restriction $(\operatorname{res}_H^G V): H \hookrightarrow$ $G \rightarrow GL(V)$ **Lemma 11.2.** Let χ_V be the character of V. Then, $\chi_{\operatorname{res}_H^G V} = \chi_V|_H$. Definition 11.3. Definition: Let (W, ρ_W) be a representation of H. The latter $\{f(G) \to W \mid f(gh) = \rho_W(h)^{-1}f(g) \mid \forall h \in H, \forall g \in G\}$ Lemma 11.4. $\operatorname{Ind}_H^G W$ is a representation of GExample 11.5.

• H = G; $\operatorname{Ind}_H^G W \cong W$. We just send f to $f(e_G)$ • $H = \{e\}$; $\operatorname{Ind}_H^G \mathbb{C} = \mathbb{C}[G]$, the regular representation.

• $\operatorname{Ind}_{A_4}^{A_5} \mathbb{C} \cong I_1 \oplus I_2$ (see Exercise 3 in Lec 13/14 wkst) $= \operatorname{Ind}_{A_4}^{A_5} \mathbb{C} \cong I_1 \oplus I_2$ (see Exercise 3 in Lec 13/14 wkst) $= \operatorname{Ind}_{A_4}^{A_5} \mathbb{C} \cong I_1 \oplus I_2$ (see Exercise 3 in Lec 13/14 wkst) $= \operatorname{Ind}_{A_4}^{A_5} \mathbb{C} \cong I_1 \oplus I_2$ (see Exercise 3 in Lec 13/14 wkst) **Definition 11.3.** Definition: Let (W, ρ_W) be a representation of H. The induced representation $\operatorname{Ind}_H^G W$ is the space Wr re G/H. Let $(W_g) := \{f_{w,g}: G \to W: w \in W, g \in G\} \text{ where } \begin{cases} f_{w,g}(x) := 0 & \text{if } x \not\in gH \\ f_{w,g}(gh) := \rho_W(h^{-1})u & \forall h \in H \end{cases}$ Obviously, $(\mathcal{O}_g) \setminus W_g \to W \text{ by } \mathcal{O}_g(f_{w,g}) := \text{ wis a vector space isomorphism. Moreover, } W_g \text{ can be denoted as } W_{gH}$ since it is invariant under the coset. (In other words, if gH = g'H, then $W_g = W_{g'}$; just permuting W_g .) Theorem 11.6. Reorem 11.6.

(1) $\operatorname{Ind}_{H}^{G}(W \oplus W') = \operatorname{Ind}_{H}^{G}W \oplus \operatorname{Ind}_{H}^{G}W'$ (2) Let R be a set of coset representation of G/H. Then, as a vector space, $\operatorname{Ind}_{H}^{G}W = \bigoplus_{r \in R} W_{r}$. In particular, $\operatorname{dim}(\operatorname{Ind}_{H}^{G}W) = [G:H]\operatorname{dim}W$.

(3) Let $H \leq K \leq G$. Then $\operatorname{Ind}_{H}^{G}W \cong \operatorname{Ind}_{K}^{G}$. $\operatorname{Ind}_{H}^{K}W$. Proof. (1): For any $f: G \to W \oplus W'$ we may write $f(g) = (f_1(g), f_2(g))$ with $f_1: G \to W, f_2: G \to W'$ conversely, for any such f_1 and f_2 , we may compose them into a function $(f_1, f_2): G \to W \oplus W'$. This gives an isomorphism (2): Since gH = g'H implies $W_g = W_{g'}$, we may write W_r for all W_g with $r \in R$. Since $W_r \subseteq \operatorname{Ind}_H^G W$ is clear, it suffices to show that $\sum_{r \in R} W_r$ is a direct sum, and $\operatorname{Ind}_H^G W$ are contained in the direct sum. To see $\sum_{r \in R} W_r = \bigoplus_{r \in R} W_r$, let $f \in W_r \cap \sum_{s \neq r} W_s$. Then, $f = f_{w,r} = \sum_{s \neq r, w \in W} \lambda_{w,s} f_{w,s}$ for some $\lambda_{w,s} \in \mathbb{C}$. If gH = r, then $f_{w,s}(g) = 0$ for all $s \neq r$, thus $f(g) = \sum_{w \in W} \lambda_{w,s} f_{w,s}(g) = 0.$ However, if $gH \neq r$, then $f(g) = f_{w,r}(g) = 0$, thus f = 0. This shows that $W_r \cap \sum_{s \neq r} W_s = 0$, hence the sum is actually the direct sum. Now, to see $\bigoplus_{r \in R} W_r = \operatorname{Ind}_H^G W$, let $f \in \operatorname{Ind}_H^G W$. Let $w_r = f(r)$ for all $r \in R$. We claim that $f = \sum_{r \in R} f_{w_r,r}$ $\bigoplus_{r \in R} W_r$. To see this, let $g \in G$. Thus, there exists some $s \in R, h \in H$ such that g = sh. Then, $\underbrace{f(g)} = \underbrace{f(sh)} = \rho_W(h)^{-1} \underbrace{f(s)} = \rho_W(h^{-1}) \underbrace{w_s} = \underbrace{f_{w_s,s}(sh)} = \underbrace{\sum_{r \in R} f_{w_r,r}(sh)} = \underbrace{\left(\sum_{r \in R} f_{w_r,r}\right)(g)}.$ $\bigoplus_{r \in R} W_r = \operatorname{Ind}_H^G W$ Since $\mathcal{O}_g:W_g\to W$ is a vector space isomorphism, we deduce that Thus, $\dim \operatorname{Ind}_H^G W = \sum_{r \in R} \dim W_r = R | \dim W = [G:H] \dim W.$ (3): Exercise. We want to consider how G acts on each W_r appearing in (b). We claim that fu, n. Lou ben where r' is defined by r'H = grH. To check this, let $f_r \in W_r$. Then, for $s \in R$ $h \in H$, $\rho_{\operatorname{Ind}_H^G W}(g)(f_r) sh) = f_r(g^{-1}sh) = \begin{cases} 0 & \text{if } g^{-1}sH \neq rH \\ f_r(rH) & \text{if } g^{-1}sH = rH \end{cases}$ Notation: Suppose we have a class function χ on H. Write χ for the function $G \to \mathbb{C}$ (not necessarily a class function) **Definition 11.7.** Let $\chi \in \mathcal{C}_H$. Then, define $\chi \uparrow_H^G : G \to \mathbb{C}$ by Notes that the last equality holds since x = n implies $\dot{\chi}(h^{-1}r^{-1}grh) = \dot{\chi}(r^{-1}gr)$ I xea x (4x) g (4x)) = I 5(2g 2) Theorem 11.8. (2) $\chi_{\operatorname{Ind}_H^G W} = \chi_W \uparrow_H^G$. Proof. (1) Let $g, y \in G$. Then, $\chi \uparrow_{H}^{G}(y^{-1}gy) = \frac{1}{|H|} \sum_{x \in G} \dot{\chi}(x^{-1}y^{-1}gyx) = \frac{1}{|H|} \sum_{x \in G} \dot{\chi}(yx)^{-1}g(yx) = \frac{1}{|H|} \sum_{x \in G} \dot{\chi}(x^{-1}gx) = \frac{1}{|H|} \sum$ (2): We want to calculate $\chi_{\operatorname{Ind}_H^GW}(g)$ Writing $\operatorname{Ind}_H^GW \models \bigoplus_{r \in R} W_r$, we see that we can represent the matrix of $\rho_{\operatorname{Ind}_H^GW}(g)$ as an $R|\times|R|$ block matrix. Now, the trace of this matrix can only pick up entries for r such that W_r goes to W_r under $\rho_{\operatorname{Ind}_H^GW}(g)$. Thus, $\operatorname{Tr}_{W_r} \left(\rho_{\operatorname{Ind}_H^G W}(g) \right) = \operatorname{Tr}_W \left(\mathcal{O}_r \circ \rho_{\operatorname{Ind}_H^G W}(g) \circ \mathcal{O}_r^- \right)$ $= \rho_W(k^{-1}h) = \rho_W(k^{-1}h) w = \rho_W(h)^{-1} \rho_W(k)w = f_{\rho_W(k)w,r}(r0).$ Pw(k)w, y, (rh) $\mathcal{O}_r \rho_{\operatorname{Ind}_H^G W}(g) \mathcal{O}_r^{-1}(w) = \mathcal{O}_r \rho_{\operatorname{Ind}_H^G W}(g) f_{w,r} = \mathcal{O}_r f_{\rho_W(k)w,r}$ Thus, $\operatorname{Tr}_W \left(\mathcal{O}_r \rho_{\operatorname{Ind}_H^G(g)} \mathcal{O}_r^{-1} \right) = \operatorname{Tr} \left(\rho_W(k) \right) =$ Hence, (+) and (++) implies that