A Group G is a set with a map
$$*:GxG \rightarrow G$$
,
Such that $# a,b,c \in G$:
1) $(ab)*c = a*(bc)$
2) $\exists e \in G \ s.t \ a*e = e*a = a$
3) $\# a \in G, \exists a' \ s.t \ a*a' = a*a = e$
1GI is the order of G and is the cardinality
of the set G. If $a \in G$, the order of
A is $|a| = m$, where m is the smallest
bin-zero integer s.t $a'' = e$. If no

$$SL(n, #) = \{ [B_{ij}] : B_{ij} \in H \text{ and}$$

 $Mt [B_{ij}] = 1 \}$

i

in how
$$g^* - g^{**}$$
 choicer
 $|GL(n, F_3)| = \prod_{k \in D} (g^* - g^*)$
 $(g^* - g^$

A map
$$(q)$$
. H = 6, with H, 6 groups,
is called a homomorphism if
 $\forall x, y \in H$, $(q(xy) = q(x) q(y))$
 $\forall x, y \in H$, $(q(xy) = q(x) q(y))$

If, in addition,
$$q$$
 is a bijection, then
 q is an isomorphism of groups. If
two groups are isomorphic with
 $Write H = G$.
 EX) $M_{n} = Z_{n}$ $Z^{n} = 1$
 M_{n} are the n-th roots of
 M_{n} are the first M_{n} of M_{n} and
 M_{n} are the n-th roots M_{n} and
 M_{n} are the n-th roots M_{n} and
 M_{n} are the first M_{n} and
 M_{n} are the first M_{n} and
 M_{n} are the first M_{n} and
 M_{n} are the smalled non-negative
member of M_{n} then
 M_{n} are the first M_{n} are then

If H & G, we can firm the quotient grain
G/H, where the elements of G/H
are the coxets.
$$\forall x \#, y \# \in G_{H}$$
, $(x \#)(y \#) = (xy) \#$

If
$$Q: G \rightarrow K$$
 is a homomorphism,
Hen Kur $Q \lor G$.
 $Tf \quad Xe \ Ker Q \quad and \quad ye G$
 $Q[(Y \land Y)] = Q[Y] \qquad P[(YY)] = P[(Y)]$
 $= P[Y] Q[Y'] = P[(Y)] = P[(Y)]$
 $= P[(Y) Q[Y'] = P[(Y) Q[Y'] = P[(Y)]$
 $= P[(Y) Q[Y'] = P[(Y) Q[Y'$

$$C_{G}(x) = \{g \in G : g \times g\} = x \} \leq G \text{ is the }$$

$$C_{G}(x) = \{g \in G : g \times g\} = x \} \leq G \text{ is the }$$

$$C_{G}(x) = \{x \in G : g \times g\} = x \} \leq G \text{ is the }$$

$$T_{hm}: (1 G) = \{1 \in L(x)\}$$

$$T_{G}(x) = \{1 \in L(x)\}$$

•
$$\forall x, y \in V$$
 and $\forall a, b \in \mathbb{F}$
• $c (x+y) = axtay$
• $(a+b)x = ax+bx$
• $(a+b)x = a(bx)$
• $(a+b)x = a(bx)$

A set of
$$nn-zero$$
 vectors $Lb_1 \dots bn$?
is a basis for V it:
 $. \forall x \in V, \exists [a:] \in F : x = \sum_{i=1}^{n} a:b_i$
 $. (\sum_{i=0}^{n} c_i = o) = c_i = o = i \in \{1, \dots, n\}$
Then number of elements in a basis
is called the dimension of V.

Given a basis in
$$U_1$$
 [birbandon],
if
 $Te End[W] = GU$
 $T = End[W] = GU$
 $T = E^{c}ij] = C$
 $The set of invertable endomorphisms$

A a vector (part v in vert
by
$$GL(V) \simeq GL(n, F)$$
,
If $Te End(V)$, λ is said to
be an eigenvalue dT if $TxeV$
s.t $x \neq 0$ and $Tx = \lambda x$
Provedion
If $V = U, OU_2 \oplus ... \oplus U_n$,
 $duline: Tu_i: V \to V$
by $Tu_i (u_i + u_n - + u_i - + u_n) = u_n$
 $Tu_i is called the projection onto
U_i.
 $U = U, \oplus U_1 - U_1$
 $Tu_i = U_1 \oplus U_1 - U_1$
 $U_2 = U_1 \oplus U_1 - U_1 = U_1$
 $U_1 = U_1 \oplus U_1 - U_2 = U_1$
 $U_2 = U_1 \oplus U_1 - U_2 = U_1$
 $U_1 = U_1 \oplus U_1 - U_2 = U_1$
 $U_2 = U_1 \oplus U_1 - U_2 = U_2$
 $U_1 = U_1 \oplus U_1 - U_2 = U_2$$

VE KerTu N= otwo - wEW $5, k \in V$ 5 = N, + V $\mathcal{M}_{\mathcal{U}}$ (S + t). $= \pi \left((v, t, h, r), (t, t, w, r) \right)$ - V = W, + M2 こ TT (5)+ TT (+) $\pi(\alpha S) = \pi(\alpha v, +\alpha w)$ $= au, = a \Pi(s)$

 $C_{n} = Z_{h}$

(l(x) = LyeZn: FgeZn X E Un $y = g \times \tilde{g}$ y-gg x y=x CI(x)={x}