A Group G is a set with a map $*: G \times G \longrightarrow G$, Such that $\forall a, b, c \in G$:

1) $(a b) * c=a *(b c)$
2) $\exists e \in G$ sit $a r e=e+a=a$
3) $\forall a \in G, \exists a^{-1}$ sit $a+a^{-1}=a^{-1}+a=l$
$|G|$ is the order of G and is the cardinality of the set G. If $a \in G$, the order of a is $|a|=m$, where m is the smallest non-zero integer sit $a^{m}=e$. If no such m exists, then a was infinite order.

$$
\text { Ex) } \begin{aligned}
G L(n, \mathbb{F})= & \left\{\left[A_{i j}\right]: A_{i j} \in \mathbb{F}\right. \text { and } \\
& \left.\operatorname{det}\left[A_{i j}\right] \neq 0\right\} \\
S L(n, \mathbb{F})= & \left\{\left[B_{i j}\right]: B_{i j} \in \mathbb{F}\right. \text { and } \\
& \left.\operatorname{det}\left[B_{i j}\right]=1\right\}
\end{aligned}
$$

What is the order of $G L\left(n, \mathbb{H}_{q}\right)$
where $q=p^{k}$ for prime p ?

$$
\text { * For } G L\left(n, \mathbb{F}_{q}\right) \text { : }
$$

r_{1} has $q^{n}-1$ choices
r_{2} has $q^{n}-q$ choices
r_{n} has $q^{n}-q^{n-1}$ choices

$$
\left|G L\left(n, \mathbb{F}_{q}\right)\right|=\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)
$$

A set $H \subset G$ is called a subgroup it it is also a group under the operation of G. If H is a subgroup we write $H E \int g$ instead of $H \subseteq G$. It suffices ti show that H is closed under inverse and product.

$$
\begin{aligned}
& \text { and product. } \\
& E x) S L(n, \mathbb{F}) \leq G L(n, F) \\
&
\end{aligned}
$$

- for $A, B \in S L(n, \notin)$

$$
\begin{aligned}
& \text { for } A, B \in S(A B)=\underbrace{\operatorname{det} t \operatorname{det} B}=\operatorname{det}(\pm) \\
& \operatorname{det}(1 \cdot 1
\end{aligned}
$$

$$
\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(\pm)
$$

$$
=\frac{\operatorname{det} A \operatorname{det} A^{-1}}{\operatorname{det} A^{-1}=1} \rightarrow
$$

$A \operatorname{map}(Q), \underline{G} \rightarrow$, with H, G groups. is called a homomorphism if

$$
\forall x, y \in H, \quad \varphi(x y)=\varphi(x) \varphi(y)
$$

$\binom{$ Product i. }{$H}$ (product in v
If, in addition, 9 is a bijection, then Q is an isomorphism of groups. If twi groups are isomorphic we write $H \simeq G$.
$E x), u_{n} \simeq \mathbb{Z}_{n}$

$$
z^{n}=1
$$

μ_{n} are the n-th roots of Unity and C_{n} is the Cyclic group of order n.
for $z \in \mu_{n}$,

- define $\varphi(z)=\bar{k}$

$$
\begin{aligned}
& \text { define } \varphi(z)=\bar{k}) \\
& \text { for } x, y \in \mu_{n} \varphi(x y)=\varphi\left(e^{\frac{2 \pi i k}{n}} e^{\frac{2 \pi i p}{n}}\right. \\
& =\varphi\left(e^{\frac{2 \pi i(k+P)}{n}}=\bar{k}+\bar{p}=\varphi(x)+\varphi(y)\right. \\
& \text { If } \varphi(z)=\frac{1-0}{n}, \text { then } z=e^{\frac{2 \pi i k}{n}}
\end{aligned}
$$

where $k=n \cdot l$ hence

$$
\begin{aligned}
& \text { where } k=n \cdot l \\
& z=e^{\frac{2 \pi i \ln l)}{n}}=e^{2 \pi i l}=e^{0}
\end{aligned}
$$

hence $\operatorname{ker} \varphi=\{0,0$

- If $\bar{k} \in \mathbb{Z}_{n}$, then let m be the smalls nor-negative $\frac{\left(81-2 \pi_{i} \omega_{2}\right.}{\text { member of that }}$

$$
\frac{\text { We n n }}{\varphi \text { is surjective }}
$$

If $H \leq G$, a left coset of H is defined to be $x H=\{x h: h \in H\}$ and $x \in G$. Right corsets are similarly defined. Each coset is disjoint and was order $|\mathrm{H}|$. The number of comets $=\frac{|G|}{|H|}$.
These cotes form a partition of G.
H is a normal subgroup of G,
$H(\Delta) G$, if the left and right corsets are the same.
$\forall x \in G: \underline{X H}=H x$ or equivalently $x H x^{-1}=H$

If $H \triangle G_{1}$ we can form the quotient gram G / H, where the elements of G / H are the cosets.

$$
\forall \underline{x} H, \underline{y} H \in G /+1,(x H)(\underline{y} H)=((x y) H
$$

If $Q: G \rightarrow K$ is a homomorphism, then ker $\varphi \nexists G$.

- If $x+\operatorname{ker} \varphi$ and $y \in f$
$\varphi\left(y x y^{-2}\right)=\varphi(y) \varphi(x) \varphi\left(y^{-1}\right)$
$=\phi(y) \varphi\left(y^{-1}\right)=\phi\left(y y^{-1}\right)=\phi(\ell)$
thus $\bar{y} x y^{-1} t \operatorname{ker} \phi \quad \forall y \in G$
First Iso. Tho: $G / \operatorname{Ker\varphi }=\operatorname{Im}(\varphi)$
$E x)$ duet: $G L\left(n, \mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{q}^{*}$
is a homomorphism $q_{-} 1$
- Consider GL/ Nor(lat)
- for any coset A Ktar (lat),
if $B \in A \operatorname{ker}(\operatorname{det})$, the

$$
\operatorname{det} B=\operatorname{det} A
$$

- GL is partitioned into cossets with distinct dit.
- order of $S L\left(n, F_{q}\right)$ $=\left|G L\left(n, \mathbb{F}_{n}\right)\right| \rightarrow$

$$
q=p^{t}
$$

We say $x, y \in G$ are conjugate if $\exists g \in G$ s.t $x=g y g^{-1}$ The set of all elements conjugate to $x,(l(x)$, is called the Conjugacy class of x. Clearly, for an abelian groups the conjugacy classes are trivial.

$$
\begin{aligned}
& C_{G}(x)=\left\{g \in G: g \times g^{-}=x\right\} \leq G \text { is the } \\
& \text { centraliser of } x \text { in } G \text {. }
\end{aligned}
$$ centraliser of x in G

Thu:

A Vector space V over the field \mathbb{F} is a set such that:

- V is abelian under addition
- $\forall x, y \in V$ and $\forall a, b \in \mathbb{F}$

$$
\begin{aligned}
& \frac{a(x+y)}{(a+b) x}=a x+a y \\
& =a x+b x \\
& (a b) x=a(b x) \\
& =x=x
\end{aligned}
$$

A set of nin-zero vectors $\left\{b_{1} \ldots b_{n}\right\}$ is a basis for V if:

$$
\begin{aligned}
& \left.\forall x \in V, \exists[a:] \in \mathbb{F}: x=\sum_{1}^{n} a_{i} b_{i}\right] \\
& \sum_{i}^{n} c_{i} b_{i}=0 \rightarrow c_{i}=0 \quad i \in\{1, \ldots n\}
\end{aligned}
$$

Then number of elements in a basis is called the dimension of V.

A subset $U \subseteq V$ is called a subspace of V. if it is a vecterspance with respect to the addition and scalar multiplication of V.

If u is a subspace of V_{1} then
any basis of U can be extended to form a basis of V.

If $U_{1} \ldots U_{n}$ are subspaces of V_{1} then

$$
u_{1}+u_{2} \ldots+u_{n}=\left\{\frac{\left.u_{1}+u_{i}+\ldots+u_{n}: u_{i} t u_{i}\right\}}{1}\right.
$$

is also a subspace of V. called the sum of the U_{i}. If every element of the sum can be written in a unique way, then the sum is called a direct sum, written $U_{1} \oplus U_{2} \ldots \oplus \oplus U_{n}$

$$
V \in V \quad 1=\sum_{1}^{n} u_{i}
$$

- For 2 subspaces $u+w$ is a direct sum if $u \cap w=\{0\}$,
$-\left[U_{1}+u_{2} \ldots+U_{n}\right.$ is a direct sum if $\quad u_{1}+u_{n} \ldots+u_{n}=0 \longleftrightarrow u_{i}=0$

It $[4, \ldots$ ha are vector spices ore the the external direct sum is defied to be

$$
\rightarrow V=\left\{\underline{\left(u_{1}, u_{n}, \ldots, u_{n}\right)}: u_{i} \in U_{i}\right\}
$$

and operations are done componontwise.

$$
\begin{aligned}
& \text { operations ave done comporone.. } \\
& u_{\in} V=(\lambda u, \nsim u 2 \cdots)
\end{aligned}
$$

-

A linemen transformation is a map
$T: U \rightarrow V$ between vector spaces such that:

$$
\begin{aligned}
& T(x+y)=T_{x}+T_{y} \quad \forall x, y \in U \text {. } \\
& T(a x)=a T(x), a \in \mathbb{F}
\end{aligned}
$$

If $T: U \rightarrow U$, then it is called an endomorphism.

The set of all endomorphisms of U is denoted End (u) and is an algebra if multiplication :s taken to be function composition.

An algebra is a vector space with a distributive product that respects Scalar multiplication.

Given a basis in $U_{1},\left\{b_{1}, b_{2} \ldots b_{n}\right\}$, if

$$
T \in E n d(u)_{,} \in U
$$

$\rightarrow T b_{i}=\sum c_{i j} b_{j}$

$$
[T]=\left[c_{i j}\right]=C
$$

The set of invertable endomorphisms -.... $V /$ \& donAted
(on a vector space v... un... by $G L(v) \simeq G L \ln , \mathbb{F})$.

If $T_{\in} E_{n}(V), \lambda$ is said to be an eigenvalue d T if $\exists x \in V$ s.t $x \neq 0$ and $T x=\lambda x$

Projection
If $V=U_{1} \oplus U_{2} \oplus \ldots U_{n}$,
define: $\pi_{u_{i}}: V \rightarrow V$

$$
\text { by } \pi_{u_{i}} \underbrace{\left.u_{i}+u_{2} \ldots+u_{i} \ldots+u_{1}\right)}=\underbrace{u_{1}}_{u_{1}}
$$

$\pi_{u_{i}}$ is called the projection onto u_{i}.

$$
V=u_{1} \otimes u_{2} \cdot \pi_{u_{1}}=u_{1}
$$

$$
{ }^{\text {in }} u_{1} \pi_{1}=u_{2}
$$

If $n=2$, in $\pi_{u_{i}}=u_{i}$ and $\operatorname{ker} \pi_{u_{i}}=u_{j} j \neq i$

Any $T \in \operatorname{End}(v)$ set $(T=7$ /is also called a projection.

The: If π is a projection on V, then $V=i m \pi$ o kor π.

$$
\Omega v=\pi(v)+(v-\pi(v))
$$

$$
H \leq G \quad[G ; H]=2
$$

H

$$
\begin{aligned}
& i n \pi_{\mu}=u \quad V=u \oplus w \\
& v \in V \\
& v=u+w \quad u \in U \\
& w \in W
\end{aligned}
$$

$$
\begin{aligned}
& u \times u_{1} \\
& \pi(u+0)=n \\
& u \in \pi(u) \\
& v e i m \pi u s^{u} \\
& v=5 \\
& \pi(v+w)=u \\
& \pi(u)=u \\
& \pi^{2}, \pi \\
& m \pi_{\mu}=U \\
& \text { per } \pi_{\mu}=W \\
& \text { veranata } \\
& \begin{array}{l}
v=u \times v \\
\text { sev }
\end{array} \\
& \begin{aligned}
& v=0+\omega \\
& K(w)=0 \\
& 1 \in \text { Ver } \pi_{\mu}
\end{aligned}
\end{aligned}
$$

ve KerTu

$$
\begin{aligned}
& v=0+0 \\
& =w \in W \\
& s, t \in V \text { g } s=n_{1}+\omega_{1} \\
& t=u_{2}+\omega_{2} \\
& \pi_{n}(5+t) \text {. } \\
& =\pi \underbrace{\left.\left(v_{1}+u_{2}\right)_{i} v_{i}+\omega \sim\right)}_{n \in e^{u}} w \\
& \text {, } u=u_{1}+u_{2} \\
& =\pi(s)+\pi(t) \\
& \pi(a s)=\pi\left(a u_{1}+a \omega_{1}\right) \\
& =a u_{1}=a \pi(s)
\end{aligned}
$$

$$
\begin{aligned}
& C_{n}=\mathbb{Z}_{n} \\
& x \in \mathbb{Z}_{n} \\
& C_{l}(x)=\left\{\begin{array}{l}
y \in \mathbb{Z}_{n}: \exists g \mathcal{Z}_{n} \\
\left.y=g \times g^{-1}\right\}
\end{array}\right. \\
& y=g \int_{l x}^{1} x \\
& y=x \\
& C l(x)=\{x\}
\end{aligned}
$$

