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Welcome back to abstract linear algebra :)
Let’s recall:

Definition. Given a group G, we say (ρ, V ) is a representation if (1) V is a
vector space and (2) ρ : G→ Aut(V ) (or GL(V )) is a homomorphism.

Last time we discussed how all ρ(g)’s are basically just change-of-basis
matrices of size dim(V ). (So far all our representations have been finite-
dimensional, and that won’t change today.) Remember also that our definition
of an isomorphism φ : V1 → V2 between representations ρ1 and ρ2 requires
that φ intertwine the actions of G implemented by the ρi’s: φ(ρ1(g)(v)) =
ρ2(g)φ(v)).

Example. Let G = span{1, x, x2, x3} and V = C2. Define ρ : G → GL2(C)

by x 7→
[

0 1
−1 0

]
. Then ρ is a representation on V .

Question: does there exist a vector w ∈ C2 such that w is a common
eigenvector amongst all ρ(g) for g ∈ G? Seems like a staunch request... but
let’s see.

First, note that ρ(x2) = ρ(x)2 = − id2, and by linearity of ρ we only need

to find an eigenvector for

[
0 1
−1 0

]
. Wow, that got simpler quickly. It’s almost

like someone chose this example on purpose :)[
1
i

]
is such an eigenvector with eigenvalue−i; let’s call it w. Hence span(w)

is a stable subspace under the action of G implemented by ρ. So here’s what
we can do: we can restrict the action of G to this subspace and get a repre-
sentation. (Depending on how fresh your linear algebra is, you might already
have already found another linearly independent vector to w which is also sta-
ble under this action; we’ll use that later!) In some sense this says that there
is some basis for C2 such that the collection {ρ(g) : g ∈ G} acts diagonally
simultaneously on C2 with this basis.

This kind of decomposition of representations into smaller ones is so im-
portant we put words to it:

Definition. Let ρ : G → GL(V ) be a representation of G. Suppose W is a
subspace of V (I will write W < V , sorry group people) which is G-invariant,
i.e. ρ(g)(w) ∈ W for all g ∈ G, w ∈ W . Then (ρ|W ,W ) is a representation of
G and we say W is a subrepresentation of V .



2

Example. (Boring ones) 0 is a subrepresentation. V is one too. All others
are called proper because we actually care about those.

Definition. The direct sum of two representations of G (σ, S) and (τ, T ) is
the representation of G on V = S⊕T given by ρ(g)(s+ t) = σ(g)(s)+τ(g)(t).
That is, if we reuse notation and write s := dim(S) and t := dim(T ) we get
that

ρ(g) =

[
σ(g) 0

0 τ(g)

]
∈ GLs+t(F )

where the matrix above is block diagonal.

It turns out that, in our big example above, the span of the vector u :=[
1
−i

]
is also stable underneath this action where u has an eigenvalue of i.

Hence if we choose (w, u) as a basis for V , we get ρ : G → GL2(C) can be

written as xj 7→
[
(−i)j 0

0 ij

]
=

[
−i 0
0 j

]
. Hence V =∼= span(u)⊕ span(w).

Example. (Exercise (6d)) Let G act on a set X. Define a vector space k[X]
to be the set of k-valued function on X (functions f : X → k). This gives us
a k-representation ρ : G → k[X] where (ρ(g)(f))(x) = f(g−1x). Can we find
a proper subrepresentation in k[X]? (The author uses F but I couldn’t stick
with it; if we were gonna call F a field we should have done it a long time
ago.)

Hmm... my favorite go-to when talking about functions on a space is to
look at the constant functions. This serves as a subspace, since 0 is a constant
function. We know that (ρ(g)(f))(x) = f(g−1x), but since f is constant we
get that f(g−1·) = f(·) and hence is a constant function. Hence the action of
G on k[X] is well-defined when restricted to the constant functions on X.

In some sense representations of a group without proper subrepresentations
are the core elements of that group’s representation. Any other representation
could be decomposed into these, but these are indecomposable. They’re the
pivotal things to look at when trying to make claims on a group based on its
representation theory. Based on this we make some definitions:

Definition. A representation is called irreducible if it contains no proper
subrepresentation. It is called completely reducible if it decomposes as a direct
sum of irreducible representations.
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This “completely reducible” seems interesting. With all the examples we
have discussed (fields of characteristic 0, finite-dimensional vector spaces) we
have seen stuff that, well, looks completely reducible. It turns out that if we
add a condition that G is also finite, any such representation of G is completely
reducible. We can even consider fields of characteristic not dividing |G|. Next
lecture someone else will discuss that with you (not me, that’s not my vibe).

Example. The classification of representations of Sn is a big deal. Hopefully
you’ll see how terrible it can get but how much Young diagrams can make it
a big nicer. It doesn’t look like that’s on the itinerary for this semester, but
I’m dropping some terms here to get you interested. Picture math is cool :)

A standard representation ρ of G = S3 on V = C3 with basis elements
comes from taking a symmetry π ∈ S3 and having it act on the basis elements
{e1, e2, e3} of C3, sending ei to eπ(i). Question: is there a subrepresentation
lurking underneath here?

YES!!!!!!!!!! It’s your favorite one whenever you’re dealing with symmetries
on a finite set. The subspace span(e1 + e2 + e3) is definitely stable underneath
ρ(π). But can we find a way to decompose ρ into a direct sum like this? Let’s
see... let’s change our basis from {e1, e2, e3} to {e1 + e2 + e3, e1, e2}. Let’s look
at the images of the elements of G as matrices over C3:

e 7→

1 0 0
0 1 0
0 0 1

 (23) 7→

1 0 1
0 1 −1
0 0 −1


(12) 7→

1 0 0
0 0 1
0 1 0

 (123) 7→

1 0 1
0 0 −1
0 1 −1


(13) 7→

1 1 0
0 −1 0
0 −1 1

 (132) 7→

1 1 0
0 −1 1
0 −1 0


Note that, because e1 +e2 +e3 is an eigenvector with eigenvalue 1, the first

column in every matrix is

1
0
0

. But in this basis we’ve chosen, some element

of e1 + e2 + e3 is present in how ρ(π) acts on e1 and e2 for some π. That’s
because V 6∼= span(e1 + e2 + e3)⊕ span(e1, e2). We already kind of knew this;
span(e1, e2) is not G-invariant.

So what is G-invariant? Oof. These matrices don’t look like they’re much
help. In fact it’s not quite clear to me why, but it turns out that the basis we
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want to choose is span(e1 − e2, e2 − e3). Once we make this decomposition,
we get V ∼= span(e1 + e2 + e3)⊕ span(e1− e2, e2− e3). It turns out this latter
term in the direct sum is irreducible. Exercise: can you prove why?


