
Representation Theory Notes
for

Iain Gordon’s Class
Lecture 6

Abelian Groups

Schur′s Lemma : Let V be an irred. rep. of G. Then every G-homomorphism φ : V → V (G-endomorphism)
is a scalar.
Theorem : All nonzero complex irreducible reps. of an abelian group G have degree 1.

Proof. Let V be a complex irred. rep. of G. Let g ∈ G. Consider the linear transformation
φ = ρ(g) · V → V . It’s a G-homomorphism: Let h ∈ G and v ∈ V .

φ(ρ(h)v) = ρ(g)(ρ(h)v)

= ρ(gh)(v)

= ρ(hg)(v)

= ρ(h)(ρ(g)(v))

= ρ(h)(φ(v)).

Since V is irred., Schur’s Lemma implies that φ is scalar. So, ∃λ ∈ C (depending on g) s.t.
ρ(g)(v) = φ(v) = λv. Since g is an arbitrary element of G, this means that each group element acts on V by
scalar multiplication.

Every 1-dimensional subspace (line) of V is stable (closed) under scalar multiplication. We just showed
every element of G acts on V by scalar multiplication, so every 1-D subspace of V is G-invariant and thus a
subrep. We assumed V is irreducible (has no proper subrep.), so V must be 1-dimensional.

Remark : (1) Let G = Cn = 〈x : xn = e〉. If (V, ρ) is a complex irred. rep. of G, we just proved that it is
1-dimensional. So, ρ(x) = ω where ω ∈ C. Now, 1 = ρ(e) = ρ(xn) = ρ(x)n = ωn. So, ω is an nth root of
unity. Thus,

ω = exp

(
2πi

k

n

)
, k ∈ {0, . . . , n− 1}.

So, there are at most n irred. complex reps. of G. The nth roots of unity are distinct though, so there
are exactly n irred. complex reps. of G = Cn.

(2) Each finite abelian group is a product C
p
i1
1
× · · · × C

p
it
t

. So, using these ideas, we can describe all

complex irred. reps. of finite abelian groups!

(Exercise 4) Let ρj = exp(2πi/p
ij
j ) for j = 1, . . . , t. Then, let C

p
ij
j

= 〈xj : x
p
ij
j

j = e〉. So, an element of G has

the form (xa1
1 , x

a2
2 , . . . , x

at
t ) with 0 ≤ aj ≤ p

ij
j − 1 for 1 ≤ j ≤ t.

Now, we get an irreducible rep. of G labeled by a t-tuple of elements (r1, r2, . . . , rt) with 0 ≤ rj ≤ p
ij
j − 1

by sending (xa1
1 , x

a2
2 , . . . , x

at
t ) 7→ (ρa1

1 )r1(ρa2
2 )r2 · · · (ρat

t )rt . This produces all possible irred. reps. because xj
has to go to some ρ

rj
j . Generators determine where the whole group maps to. These reps. are distinct since

the generators are sent to different things in each one.

(Exercise 3) Prove that the image of a G-homomorphism φ : V →W is a subrepresentation of W .
Sol. Since Imφ is a subspace of W , we only need to show that it is G-invariant. So, let g ∈ G and

x ∈ Imφ. Then, x = φ(v) for some v ∈ V . Thus, ρw(g)(x) = ρw(g)(φ(v)) = φ(ρV (g)(v)) ∈ Imφ. The second
equality is true because φ is a G-homomorphism. So, Imφ is G-invariant and thus a subrep. of W .
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Theorem : Let V and W be irred. reps. of G and φ : V →W a G-homomorphism.
(i) If V and W are not isomorphic, then φ is the zero map.
(ii) If V and W are isomorphic, then φ is the zero map or φ is an isomorphism.

Proof. Since kerφ is a subrep. of V , kerφ is 0 or V since V is irreducible.
kerφ = V ⇐⇒ φ is the zero map; kerφ = 0 ⇐⇒ φ is injective.
Since imφ is a subrep. of W , imφ is 0 or W since W is irreducible.
imφ = 0 ⇐⇒ φ is zero map; imφ = W ⇐⇒ φ is surjective.
The conclusion follows.

(Exercises 5,6) HomG(V,W ) is an F -vector space under the operations (φ + ψ)(v) = φ(v) + ψ(v) and
(λφ)(v) = λ · φ(v) for φ, ψ ∈ HomG(V,W ) and λ ∈ F .

Also, EndG(V ) is an F -algebra, and EndG(V ) is a division algebra when V is irreducible.

Sol. The fact that it’s a vector space is straightforward, so we just need to show that φ, ψ ∈ HomG(V,W )
and λ, µ ∈ F implies λφ+ µψ ∈ HomG(V,W ). So, we need to show that this G-intertwines.

(λφ+ µψ)(ρV (g)(v)) = λ(φ(ρV (g)(v))) + µ(ψ(ρV (g)(v))) (def)

= λ(ρW (g)(φ(v))) + µ(ρW (g)ψ(v))

= ρW (g)(λ(φ(v))) + ρW (g)(µ(ψ(v))) (F-linearity)

= ρW (g)((λφ+ µψ)(v)).

Thus, it is G-intertwining, and HomG(V,W ) is a vector space.

Sol. Since EndG(V ) = HomG(V, V ), we know from 5 that it is a subspace of the F -algebra End(V ) since
it is a vector space. We just need to show that it is closed under multiplication of ”vectors.”

So,

(φψ)(ρV (g)(v)) = φ(ψ(ρV (g)(v)))

= φ(ρV (g)ψ(v))

= ρV (g)(φψ(v)).

Thus, φψ ∈ EndG(V ), and EndG(V ) is an F -algebra.
Applying this exercise to F = C we see that

dimCHomG(V,W ) =

{
0 if V 6∼= W

1 if V ∼= W.

As an example, EndG(V ) = C when F = C, G is finite, and V is any finite degree irred. rep.
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Isotypic Decomposition

(Assumptions: G is finite group, F is a field s.t. |G|−1 ∈ F )

Maschke’s Theorem (from Lecture 4) tells us that a finite deg. rep. V can be decomposed into a direct
sum of irred. reps.: V = V1⊕· · ·⊕Vk. How unique is this? What if V = V ′1⊕· · ·⊕V ′j . Is there a relationship
between these decompositions? The answer is yes! And the isotypic decomposition is what we’re looking
for.

(Final lemma of talk)

Lemma : Let φ : V → W be a G-homomorphism. Then V decomposes into a direct sum of G-invariant
subspaces V = U ⊕ kerφ where U ∼= imφ ⊂W .

Proof. Recall, kerφ is a subrep. of V . By a theorem from Lecture 4 (Theorem 4.1), we can find a G-invariant
complement U to kerφ: V = U ⊕ kerφ. We just need to show that U ∼= imφ. Let φ|U : U → W be the
restriction of φ to U . Since φ is a G-homomorphism, so is φ|U . Also, if u ∈ U , then u ∈ kerφ|U ⇐⇒ u ∈
kerφ ∩ U = {0}. This is {0} by our definition of U as a complement of kerφ. Thus, u = 0, and φ|U is
injective.

Next, we’ll show that φ|U has image imφ. We will show imφ|U = imφ. First, note that imφ|U ⊂ imφ
For the reverse inclusion, suppose w ∈ imφ. Then, for some v ∈ V , w = φ(v). But, v = u + k. So,
w = φ(u + k) = φ(u) + φ(k) = φ(u) = φ|U (u). Thus, w ∈ imφ|U . So, φ|U is an injective G-homomorphism
whose image is imφ. Thus, U ∼= imφ.

IF TIME PERMITS! IF TIME PERMITS! IF TIME PERMITS!

Def. Let V be a rep. of G of finite degree. By Maschke’s Theorem (Lecture 4, Corollary 4.2), V =
V1 ⊕ · · · ⊕ Vk where each Vi is an irred. rep. of G. After re-ordering, we may assume that

V = V1 ⊕ · · · ⊕ Vn1 ⊕ Vn1+1 ⊕ · · · ⊕ Vn2 ⊕ · · · ⊕ Vnm−1+1 ⊕ · · · ⊕ Vnm

= V I1 ⊕ V I2 ⊕ · · · ⊕ V Im

where k = nm and I1 ∼= {V1, . . . , Vn1
}, I2 ∼= {Vn1+1, . . . , Vn2

}, . . ., Im ∼= {Vnm−1+1, . . . , Vnm
}. Each Ij is an

irred. subrep. of G and Ii 6∼= Ij when i 6= j. So, we collect together all the V ′i s that are isomorphic to one
another into m isomorphism classes. The second equality is called an isotypic decomposition of V and each
V Ij is called an isotypic component.
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