Representation Theory Notes for Iain Gordon's Class Lecture 6

Abelian Groups

<u>Schur's Lemma</u>: Let V be an irred. rep. of G. Then every G-homomorphism $\phi : V \to V$ (G-endomorphism) is a scalar.

<u>Theorem</u> : All nonzero complex irreducible reps. of an abelian group G have degree 1.

Proof. Let V be a complex irred. rep. of G. Let $g \in G$. Consider the linear transformation $\phi = \rho(g) \cdot V \to V$. It's a G-homomorphism: Let $h \in G$ and $v \in V$.

$$\begin{split} \phi(\rho(h)v) &= \rho(g)(\rho(h)v) \\ &= \rho(gh)(v) \\ &= \rho(hg)(v) \\ &= \rho(h)(\rho(g)(v)) \\ &= \rho(h)(\phi(v)). \end{split}$$

Since V is irred., Schur's Lemma implies that ϕ is scalar. So, $\exists \lambda \in \mathbb{C}$ (depending on g) s.t. $\rho(g)(v) = \phi(v) = \lambda v$. Since g is an arbitrary element of G, this means that each group element acts on V by scalar multiplication.

Every 1-dimensional subspace (line) of V is stable (closed) under scalar multiplication. We just showed every element of G acts on V by scalar multiplication, so every 1-D subspace of V is G-invariant and thus a subrep. We assumed V is irreducible (has no proper subrep.), so V must be 1-dimensional. \Box

<u>Remark</u>: (1) Let $G = C_n = \langle x : x^n = e \rangle$. If (V, ρ) is a complex irred. rep. of G, we just proved that it is 1-dimensional. So, $\rho(x) = \omega$ where $\omega \in \mathbb{C}$. Now, $1 = \rho(e) = \rho(x^n) = \rho(x)^n = \omega^n$. So, ω is an *n*th root of unity. Thus,

$$\omega = \exp\left(2\pi i \frac{k}{n}\right), k \in \{0, \dots, n-1\}.$$

So, there are at most n irred. complex reps. of G. The nth roots of unity are distinct though, so there are exactly n irred. complex reps. of $G = C_n$.

(2) Each finite abelian group is a product $C_{p_1^{i_1}} \times \cdots \times C_{p_t^{i_t}}$. So, using these ideas, we can describe all complex irred. reps. of finite abelian groups!

(Exercise 4) Let $\rho_j = \exp(2\pi i/p_j^{i_j})$ for $j = 1, \dots, t$. Then, let $C_{p_j^{i_j}} = \langle x_j \colon x_j^{p_j^{i_j}} = e \rangle$. So, an element of G has the form $(x_1^{a_1}, x_2^{a_2}, \dots, x_t^{a_t})$ with $0 \le a_j \le p_j^{i_j} - 1$ for $1 \le j \le t$.

Now, we get an irreducible rep. of G labeled by a t-tuple of elements (r_1, r_2, \ldots, r_t) with $0 \le r_j \le p_j^{i_j} - 1$ by sending $(x_1^{a_1}, x_2^{a_2}, \ldots, x_t^{a_t}) \mapsto (\rho_1^{a_1})^{r_1} (\rho_2^{a_2})^{r_2} \cdots (\rho_t^{a_t})^{r_t}$. This produces all possible irred. reps. because x_j has to go to some $\rho_j^{r_j}$. Generators determine where the whole group maps to. These reps. are distinct since the generators are sent to different things in each one.

(Exercise 3) Prove that the image of a G-homomorphism $\phi: V \to W$ is a subrepresentation of W.

Sol. Since Im ϕ is a subspace of W, we only need to show that it is G-invariant. So, let $g \in G$ and $x \in \text{Im}\phi$. Then, $x = \phi(v)$ for some $v \in V$. Thus, $\rho_w(g)(x) = \rho_w(g)(\phi(v)) = \phi(\rho_V(g)(v)) \in \text{Im}\phi$. The second equality is true because ϕ is a G-homomorphism. So, Im ϕ is G-invariant and thus a subrep. of W.

<u>Theorem</u>: Let V and W be irred. reps. of G and $\phi: V \to W$ a G-homomorphism. (i) If V and W are not isomorphic, then ϕ is the zero map. (ii) If V and W are isomorphic, then ϕ is the zero map or ϕ is an isomorphism.

Proof. Since ker ϕ is a subrep. of V, ker ϕ is 0 or V since V is irreducible. ker $\phi = V \iff \phi$ is the zero map; ker $\phi = 0 \iff \phi$ is injective. Since im ϕ is a subrep. of W, im ϕ is 0 or W since W is irreducible. im $\phi = 0 \iff \phi$ is zero map; im $\phi = W \iff \phi$ is surjective. The conclusion follows.

(Exercises 5,6) $\operatorname{Hom}_G(V,W)$ is an *F*-vector space under the operations $(\phi + \psi)(v) = \phi(v) + \psi(v)$ and $(\lambda\phi)(v) = \lambda \cdot \phi(v)$ for $\phi, \psi \in \operatorname{Hom}_G(V,W)$ and $\lambda \in F$.

Also, $\operatorname{End}_G(V)$ is an *F*-algebra, and $\operatorname{End}_G(V)$ is a division algebra when V is irreducible.

Sol. The fact that it's a vector space is straightforward, so we just need to show that $\phi, \psi \in Hom_G(V, W)$ and $\lambda, \mu \in F$ implies $\lambda \phi + \mu \psi \in Hom_G(V, W)$. So, we need to show that this G-intertwines.

$$\begin{aligned} (\lambda\phi + \mu\psi)(\rho_V(g)(v)) &= \lambda(\phi(\rho_V(g)(v))) + \mu(\psi(\rho_V(g)(v))) \text{ (def)} \\ &= \lambda(\rho_W(g)(\phi(v))) + \mu(\rho_W(g)\psi(v)) \\ &= \rho_W(g)(\lambda(\phi(v))) + \rho_W(g)(\mu(\psi(v))) \text{ (F-linearity)} \\ &= \rho_W(g)((\lambda\phi + \mu\psi)(v)). \end{aligned}$$

Thus, it is G-intertwining, and $\operatorname{Hom}_{G}(V, W)$ is a vector space.

Sol. Since $\operatorname{End}_G(V) = \operatorname{Hom}_G(V, V)$, we know from 5 that it is a subspace of the *F*-algebra $\operatorname{End}(V)$ since it is a vector space. We just need to show that it is closed under multiplication of "vectors." So,

$$\begin{aligned} (\phi\psi)(\rho_V(g)(v)) &= \phi(\psi(\rho_V(g)(v))) \\ &= \phi(\rho_V(g)\psi(v)) \\ &= \rho_V(g)(\phi\psi(v)). \end{aligned}$$

Thus, $\phi \psi \in End_G(V)$, and $End_G(V)$ is an *F*-algebra. Applying this exercise to $F = \mathbb{C}$ we see that

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G}(V, W) = \begin{cases} 0 & \text{if } V \not\cong W\\ 1 & \text{if } V \cong W \end{cases}$$

As an example, $\operatorname{End}_G(V) = \mathbb{C}$ when $F = \mathbb{C}$, G is finite, and V is any finite degree irred. rep.

Isotypic Decomposition

(Assumptions: G is finite group, F is a field s.t. $|G|^{-1} \in F$)

Maschke's Theorem (from Lecture 4) tells us that a finite deg. rep. V can be decomposed into a direct sum of irred. reps.: $V = V_1 \oplus \cdots \oplus V_k$. How unique is this? What if $V = V'_1 \oplus \cdots \oplus V'_j$. Is there a relationship between these decompositions? The answer is yes! And the isotypic decomposition is what we're looking for.

(Final lemma of talk)

<u>Lemma</u>: Let $\phi: V \to W$ be a *G*-homomorphism. Then *V* decomposes into a direct sum of *G*-invariant subspaces $V = U \oplus \ker \phi$ where $U \cong \operatorname{im} \phi \subset W$.

Proof. Recall, ker ϕ is a subrep. of V. By a theorem from Lecture 4 (Theorem 4.1), we can find a G-invariant complement U to ker ϕ : $V = U \oplus \text{ker}\phi$. We just need to show that $U \cong \text{im}\phi$. Let $\phi|_U : U \to W$ be the restriction of ϕ to U. Since ϕ is a G-homomorphism, so is $\phi|_U$. Also, if $u \in U$, then $u \in \text{ker}\phi|_U \iff u \in \text{ker}\phi \cap U = \{0\}$. This is $\{0\}$ by our definition of U as a complement of ker ϕ . Thus, u = 0, and $\phi|_U$ is injective.

Next, we'll show that $\phi|_U$ has image $\operatorname{im}\phi$. We will show $\operatorname{im}\phi|_U = \operatorname{im}\phi$. First, note that $\operatorname{im}\phi|_U \subset \operatorname{im}\phi$ For the reverse inclusion, suppose $w \in \operatorname{im}\phi$. Then, for some $v \in V$, $w = \phi(v)$. But, v = u + k. So, $w = \phi(u+k) = \phi(u) + \phi(k) = \phi(u) = \phi|_U(u)$. Thus, $w \in \operatorname{im}\phi|_U$. So, $\phi|_U$ is an injective *G*-homomorphism whose image is $\operatorname{im}\phi$. Thus, $U \cong \operatorname{im}\phi$.

IF TIME PERMITS! IF TIME PERMITS! IF TIME PERMITS!

Def. Let V be a rep. of G of finite degree. By Maschke's Theorem (Lecture 4, Corollary 4.2), $V = V_1 \oplus \cdots \oplus V_k$ where each V_i is an irred. rep. of G. After re-ordering, we may assume that

$$V = V_1 \oplus \dots \oplus V_{n_1} \oplus V_{n_1+1} \oplus \dots \oplus V_{n_2} \oplus \dots \oplus V_{n_{m-1}+1} \oplus \dots \oplus V_{n_m}$$
$$= V^{I_1} \oplus V^{I_2} \oplus \dots \oplus V^{I_m}$$

where $k = n_m$ and $I_1 \cong \{V_1, \ldots, V_{n_1}\}$, $I_2 \cong \{V_{n_1+1}, \ldots, V_{n_2}\}$, ..., $I_m \cong \{V_{n_m-1+1}, \ldots, V_{n_m}\}$. Each I_j is an irred. subrep. of G and $I_i \ncong I_j$ when $i \ne j$. So, we collect together all the V'_i that are isomorphic to one another into m isomorphism classes. The second equality is called an isotypic decomposition of V and each V^{I_j} is called an isotypic component.