Representation Theory Notes
 for
 Iain Gordon's Class
 Lecture 6
 Abelian Groups

$\underline{\text { Schur's Lemma }}$: Let V be an irred. rep. of G. Then every G-homomorphism $\phi: V \rightarrow V$ (G-endomorphism) is a scalar.
Theorem : All nonzero complex irreducible reps. of an abelian group G have degree 1.
Proof. Let V be a complex irred. rep. of G. Let $g \in G$. Consider the linear transformation $\phi=\rho(g) \cdot V \rightarrow V$. It's a G-homomorphism: Let $h \in G$ and $v \in V$.

$$
\begin{aligned}
\phi(\rho(h) v) & =\rho(g)(\rho(h) v) \\
& =\rho(g h)(v) \\
& =\rho(h g)(v) \\
& =\rho(h)(\rho(g)(v)) \\
& =\rho(h)(\phi(v)) .
\end{aligned}
$$

Since V is irred., Schur's Lemma implies that ϕ is scalar. So, $\exists \lambda \in \mathbb{C}$ (depending on g) s.t.
$\rho(g)(v)=\phi(v)=\lambda v$. Since g is an arbitrary element of G, this means that each group element acts on V by scalar multiplication.

Every 1-dimensional subspace (line) of V is stable (closed) under scalar multiplication. We just showed every element of G acts on V by scalar multiplication, so every 1-D subspace of V is G-invariant and thus a subrep. We assumed V is irreducible (has no proper subrep.), so V must be 1 -dimensional.

Remark: (1) Let $G=C_{n}=\left\langle x: x^{n}=e\right\rangle$. If (V, ρ) is a complex irred. rep. of G, we just proved that it is 1 -dimensional. So, $\rho(x)=\omega$ where $\omega \in \mathbb{C}$. Now, $1=\rho(e)=\rho\left(x^{n}\right)=\rho(x)^{n}=\omega^{n}$. So, ω is an nth root of unity. Thus,

$$
\omega=\exp \left(2 \pi i \frac{k}{n}\right), k \in\{0, \ldots, n-1\} .
$$

So, there are at most n irred. complex reps. of G. The nth roots of unity are distinct though, so there are exactly n irred. complex reps. of $G=C_{n}$.
(2) Each finite abelian group is a product $C_{p_{1}^{i_{1}}} \times \cdots \times C_{p_{t}^{i_{t}}}$. So, using these ideas, we can describe all complex irred. reps. of finite abelian groups!
(Exercise 4) Let $\rho_{j}=\exp \left(2 \pi i / p_{j}^{i_{j}}\right)$ for $j=1, \ldots, t$. Then, let $C_{p_{j}}=\left\langle x_{j}: x_{j}^{p_{j}^{i_{j}}}=e\right\rangle$. So, an element of G has the form $\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{t}^{a_{t}}\right)$ with $0 \leq a_{j} \leq p_{j}^{i_{j}}-1$ for $1 \leq j \leq t$.

Now, we get an irreducible rep. of G labeled by a t-tuple of elements ($r_{1}, r_{2}, \ldots, r_{t}$) with $0 \leq r_{j} \leq p_{j}^{i_{j}}-1$ by sending $\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \ldots, x_{t}^{a_{t}}\right) \mapsto\left(\rho_{1}^{a_{1}}\right)^{r_{1}}\left(\rho_{2}^{a_{2}}\right)^{r_{2}} \cdots\left(\rho_{t}^{a_{t}}\right)^{r_{t}}$. This produces all possible irred. reps. because x_{j} has to go to some $\rho_{j}^{r_{j}}$. Generators determine where the whole group maps to. These reps. are distinct since the generators are sent to different things in each one.
(Exercise 3) Prove that the image of a G-homomorphism $\phi: V \rightarrow W$ is a subrepresentation of W.
Sol. Since $\operatorname{Im} \phi$ is a subspace of W, we only need to show that it is G-invariant. So, let $g \in G$ and $x \in \operatorname{Im} \phi$. Then, $x=\phi(v)$ for some $v \in V$. Thus, $\rho_{w}(g)(x)=\rho_{w}(g)(\phi(v))=\phi\left(\rho_{V}(g)(v)\right) \in \operatorname{Im} \phi$. The second equality is true because ϕ is a G-homomorphism. So, $\operatorname{Im} \phi$ is G-invariant and thus a subrep. of W.

Theorem: Let V and W be irred. reps. of G and $\phi: V \rightarrow W$ a G-homomorphism.
(i) If V and W are not isomorphic, then ϕ is the zero map.
(ii) If V and W are isomorphic, then ϕ is the zero map or ϕ is an isomorphism.

Proof. Since $\operatorname{ker} \phi$ is a subrep. of $V, \operatorname{ker} \phi$ is 0 or V since V is irreducible.
$\operatorname{ker} \phi=V \Longleftrightarrow \phi$ is the zero map; $\operatorname{ker} \phi=0 \Longleftrightarrow \phi$ is injective.
Since $\operatorname{im} \phi$ is a subrep. of $W, \operatorname{im} \phi$ is 0 or W since W is irreducible.
$\operatorname{im} \phi=0 \Longleftrightarrow \phi$ is zero map; $\operatorname{im} \phi=W \Longleftrightarrow \phi$ is surjective.
The conclusion follows.
(Exercises 5,6) $\operatorname{Hom}_{G}(V, W)$ is an F-vector space under the operations $(\phi+\psi)(v)=\phi(v)+\psi(v)$ and $(\lambda \phi)(v)=\lambda \cdot \phi(v)$ for $\phi, \psi \in \operatorname{Hom}_{G}(V, W)$ and $\lambda \in F$.

Also, $\operatorname{End}_{G}(V)$ is an F-algebra, and $\operatorname{End}_{G}(V)$ is a division algebra when V is irreducible.
Sol. The fact that it's a vector space is straightforward, so we just need to show that $\phi, \psi \in \operatorname{Hom}_{G}(V, W)$ and $\lambda, \mu \in F$ implies $\lambda \phi+\mu \psi \in \operatorname{Hom}_{G}(V, W)$. So, we need to show that this G-intertwines.

$$
\begin{aligned}
(\lambda \phi+\mu \psi)\left(\rho_{V}(g)(v)\right) & =\lambda\left(\phi\left(\rho_{V}(g)(v)\right)\right)+\mu\left(\psi\left(\rho_{V}(g)(v)\right)\right)(\text { def }) \\
& =\lambda\left(\rho_{W}(g)(\phi(v))\right)+\mu\left(\rho_{W}(g) \psi(v)\right) \\
& =\rho_{W}(g)(\lambda(\phi(v)))+\rho_{W}(g)(\mu(\psi(v))) \text { (F-linearity) } \\
& =\rho_{W}(g)((\lambda \phi+\mu \psi)(v))
\end{aligned}
$$

Thus, it is G-intertwining, and $\operatorname{Hom}_{G}(V, W)$ is a vector space.
Sol. Since $\operatorname{End}_{G}(V)=\operatorname{Hom}_{G}(V, V)$, we know from 5 that it is a subspace of the F-algebra $\operatorname{End}(V)$ since it is a vector space. We just need to show that it is closed under multiplication of "vectors."

So,

$$
\begin{aligned}
(\phi \psi)\left(\rho_{V}(g)(v)\right) & =\phi\left(\psi\left(\rho_{V}(g)(v)\right)\right) \\
& =\phi\left(\rho_{V}(g) \psi(v)\right) \\
& =\rho_{V}(g)(\phi \psi(v)) .
\end{aligned}
$$

Thus, $\phi \psi \in \operatorname{End}_{G}(V)$, and $E n d_{G}(V)$ is an F-algebra.
Applying this exercise to $F=\mathbb{C}$ we see that

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}(V, W)= \begin{cases}0 & \text { if } V \not \approx W \\ 1 & \text { if } V \cong W\end{cases}
$$

As an example, $\operatorname{End}_{G}(V)=\mathbb{C}$ when $F=\mathbb{C}, G$ is finite, and V is any finite degree irred. rep.

Isotypic Decomposition

(Assumptions: G is finite group, F is a field s.t. $|G|^{-1} \in F$)
Maschke's Theorem (from Lecture 4) tells us that a finite deg. rep. V can be decomposed into a direct sum of irred. reps.: $V=V_{1} \oplus \cdots \oplus V_{k}$. How unique is this? What if $V=V_{1}^{\prime} \oplus \cdots \oplus V_{j}^{\prime}$. Is there a relationship between these decompositions? The answer is yes! And the isotypic decomposition is what we're looking for.
(Final lemma of talk)
$\underline{\text { Lemma }}$: Let $\phi: V \rightarrow W$ be a G-homomorphism. Then V decomposes into a direct sum of G-invariant subspaces $V=U \oplus \operatorname{ker} \phi$ where $U \cong \operatorname{im} \phi \subset W$.

Proof. Recall, ker ϕ is a subrep. of V. By a theorem from Lecture 4 (Theorem 4.1), we can find a G-invariant complement U to $\operatorname{ker} \phi: V=U \oplus \operatorname{ker} \phi$. We just need to show that $U \cong \operatorname{im} \phi$. Let $\left.\phi\right|_{U}: U \rightarrow W$ be the restriction of ϕ to U. Since ϕ is a G-homomorphism, so is $\left.\phi\right|_{U}$. Also, if $u \in U$, then $\left.u \in \operatorname{ker} \phi\right|_{U} \Longleftrightarrow u \in$ $\operatorname{ker} \phi \cap U=\{0\}$. This is $\{0\}$ by our definition of U as a complement of $\operatorname{ker} \phi$. Thus, $u=0$, and $\left.\phi\right|_{U}$ is injective.

Next, we'll show that $\left.\phi\right|_{U}$ has image $\operatorname{im} \phi$. We will show $\left.\operatorname{im} \phi\right|_{U}=\operatorname{im} \phi$. First, note that $\left.\operatorname{im} \phi\right|_{U} \subset \operatorname{im} \phi$ For the reverse inclusion, suppose $w \in \operatorname{im} \phi$. Then, for some $v \in V, w=\phi(v)$. But, $v=u+k$. So, $w=\phi(u+k)=\phi(u)+\phi(k)=\phi(u)=\left.\phi\right|_{U}(u)$. Thus, $\left.w \in \operatorname{im} \phi\right|_{U}$. So, $\left.\phi\right|_{U}$ is an injective G-homomorphism whose image is $\operatorname{im} \phi$. Thus, $U \cong \operatorname{im} \phi$.

IF TIME PERMITS! IF TIME PERMITS! IF TIME PERMITS!

Def. Let V be a rep. of G of finite degree. By Maschke's Theorem (Lecture 4, Corollary 4.2), $V=$ $V_{1} \oplus \cdots \oplus V_{k}$ where each V_{i} is an irred. rep. of G. After re-ordering, we may assume that

$$
\begin{aligned}
V & =V_{1} \oplus \cdots \oplus V_{n_{1}} \oplus V_{n_{1}+1} \oplus \cdots \oplus V_{n_{2}} \oplus \cdots \oplus V_{n_{m-1}+1} \oplus \cdots \oplus V_{n_{m}} \\
& =V^{I_{1}} \oplus V^{I_{2}} \oplus \cdots \oplus V^{I_{m}}
\end{aligned}
$$

where $k=n_{m}$ and $I_{1} \cong\left\{V_{1}, \ldots, V_{n_{1}}\right\}, I_{2} \cong\left\{V_{n_{1}+1}, \ldots, V_{n_{2}}\right\}, \ldots, I_{m} \cong\left\{V_{n_{m-1}+1}, \ldots, V_{n_{m}}\right\}$. Each I_{j} is an irred. subrep. of G and $I_{i} \not \not I_{j}$ when $i \neq j$. So, we collect together all the $V_{i}^{\prime} s$ that are isomorphic to one another into m isomorphism classes. The second equality is called an isotypic decomposition of V and each $V^{I_{j}}$ is called an isotypic component.

