Representation Theory Notes
for
Tain Gordon’s Class
Lecture 6

Abelian Groups

Schur’s Lemma : Let V be an irred. rep. of G. Then every G-homomorphism ¢ : V' — V (G-endomorphism)
is a scalar.
Theorem : All nonzero complex irreducible reps. of an abelian group G have degree 1.

Proof. Let V be a complex irred. rep. of G. Let g € G. Consider the linear transformation
¢ =p(g) -V = V. It's a G-homomorphism: Let h € G and v € V.

Since V is irred., Schur’s Lemma implies that ¢ is scalar. So, I\ € C (depending on g) s.t.
p(g)(v) = ¢(v) = Av. Since g is an arbitrary element of G, this means that each group element acts on V' by
scalar multiplication.

Every 1-dimensional subspace (line) of V is stable (closed) under scalar multiplication. We just showed
every element of G acts on V by scalar multiplication, so every 1-D subspace of V is G-invariant and thus a
subrep. We assumed V is irreducible (has no proper subrep.), so V must be 1-dimensional. O

Remark : (1) Let G = C,, = (x : 2™ = ¢). If (V,p) is a complex irred. rep. of G, we just proved that it is
1-dimensional. So, p(z) = w where w € C. Now, 1 = p(e) = p(z") = p(x)” = w™. So, w is an nth root of
unity. Thus,

k
wexp(Zm’),kG{O,...,nl}.
n

So, there are at most n irred. complex reps. of G. The nth roots of unity are distinct though, so there
are exactly n irred. complex reps. of G = C),.
(2) Each finite abelian group is a product Cpil X oee X Cpit. So, using these ideas, we can describe all
1 t

complex irred. reps. of finite abelian groups!

(Exercise 4) Let p; = exp(27ri/p;j) for j=1,...,t. Then, let C’pz'_J = (x;: as?j' = e). So, an element of G has

the form (z7*, x52,..., 2¢") with 0 < a; Sp;j —1forl1<j<t. |
Now, we get an irreducible rep. of G labeled by a t-tuple of elements (ry,rs,...,7) with 0 < r; < p;.j -1
by sending (z{*,z52,...,x¢") — (p7*)™ (p32)™ - - (py*)". This produces all possible irred. reps. because z;

has to go to some p;j . Generators determine where the whole group maps to. These reps. are distinct since
the generators are sent to different things in each one.

(Exercise 3) Prove that the image of a G-homomorphism ¢: V' — W is a subrepresentation of W.

Sol. Since Im¢ is a subspace of W, we only need to show that it is G-invariant. So, let ¢ € G and
2 € Img. Then, x = ¢(v) for some v € V. Thus, p,(9)(z) = pw(g)(d(v)) = ¢(pv(g9)(v)) € Im¢. The second
equality is true because ¢ is a G-homomorphism. So, Im¢ is G-invariant and thus a subrep. of W.



Theorem : Let V and W be irred. reps. of G and ¢ : V — W a G-homomorphism.
(i) If V and W are not isomorphic, then ¢ is the zero map.
(ii) If V- and W are isomorphic, then ¢ is the zero map or ¢ is an isomorphism.

Proof. Since ker¢ is a subrep. of V| ker¢ is 0 or V since V is irreducible.
kerp =V <= ¢ is the zero map; ker¢p = 0 <= ¢ is injective.
Since im¢ is a subrep. of W, im¢ is 0 or W since W is irreducible.
imgp =0 <= ¢ is zero map; im¢ = W <= ¢ is surjective.
The conclusion follows. O

(Exercises 5,6) Homg(V, W) is an F-vector space under the operations (¢ 4+ v¥)(v) = ¢(v) + ¥(v) and
(Ap)(v) = A+ ¢p(v) for ¢,¢b € Homg(V,W) and X € F.
Also, Endg(V) is an F-algebra, and Endg (V) is a division algebra when V' is irreducible.

Sol. The fact that it’s a vector space is straightforward, so we just need to show that ¢, v € Homg(V, W)
and \, pu € F implies A¢p + pup € Home(V,W). So, we need to show that this G-intertwines.

(Ao + ) (pv (9)(v)) = /\(cb(pv(g)(v))) 1((pv (9)(v))) (def)
Alpw (9)(0(v))) + plpw (9)1(v))
&) + pw (9)(u(¢(v))) (F-linearity)

(
((Ad + py)(v)).

Thus, it is G-intertwining, and Homg (V, W) is a vector space.

Sol. Since Endg (V) = Homg(V, V'), we know from 5 that it is a subspace of the F-algebra End(V') since
it is a vector space. We just need to show that it is closed under multiplication of ”vectors.”
So,

(0¥)(pv (9)(v)) = (¥ (pv(9)(v)))
= d(pv(g)¥(v))
= pv(9)(¢(v)).

Thus, ¢tp € Endg(V), and Endg(V) is an F-algebra.
Applying this exercise to F' = C we see that

0 fVEW

dimcHomg (V, W) = {1 VW

As an example, Endg (V) = C when F = C, G is finite, and V is any finite degree irred. rep.



Isotypic Decomposition

(Assumptions: G is finite group, F is a field s.t. |G|~! € F)

Maschke’s Theorem (from Lecture 4) tells us that a finite deg. rep. V can be decomposed into a direct
sum of irred. reps.: V =V, ®---@® V. How unique is this? What if V =V/®-- -@Vj’. Is there a relationship
between these decompositions? The answer is yes! And the isotypic decomposition is what we're looking
for.

(Final lemma of talk)

Lemma : Let ¢: V — W be a G-homomorphism. Then V decomposes into a direct sum of G-invariant
subspaces V = U @ ker¢ where U = im¢ C W.

Proof. Recall, ker¢ is a subrep. of V. By a theorem from Lecture 4 (Theorem 4.1), we can find a G-invariant
complement U to ker¢: V = U @ ker¢p. We just need to show that U = im¢. Let ¢|y: U — W be the
restriction of ¢ to U. Since ¢ is a G-homomorphism, so is ¢|y. Also, if u € U, then u € kerg|y < u €
ker¢p N U = {0}. This is {0} by our definition of U as a complement of ker¢. Thus, v = 0, and ¢|y is
injective.

Next, we’ll show that ¢|y has image im¢. We will show im¢|y = im¢. First, note that im¢|y C ime
For the reverse inclusion, suppose w € im¢. Then, for some v € V, w = ¢(v). But, v = v+ k. So,
w=¢(u+k) = o)+ ¢(k) = p(u) = ¢|y(u). Thus, w € imd|y. So, ¢|y is an injective G-homomorphism
whose image is im¢. Thus, U = im¢. O

IF TIME PERMITS! IF TIME PERMITS! IF TIME PERMITS!

Def. Let V be a rep. of G of finite degree. By Maschke’s Theorem (Lecture 4, Corollary 4.2), V =
Vi@ --- @V where each V; is an irred. rep. of G. After re-ordering, we may assume that

V:VI@"'@VM@anJrl@"'@Vng@"'@Vnm,lJrl@"'@Vnm
zvll@VIQEB-”EBVIm

where k = n,, and I1 = {Vi,..., Vo, b, L = {Vo 41, Vi, by ooy I, = {Vi,, 1 41,-.., Vi, }. Each I is an
irred. subrep. of G and I; 2 I; when i # j. So, we collect together all the V;s that are isomorphic to one
another into m isomorphism classes. The second equality is called an isotypic decomposition of V' and each
Vi is called an isotypic component.



