Lecture 10

Proof of the Orthogonality of Characters

Theorem 7.8: Suppose V and W are irreducible representations. Then,

$$
\begin{aligned}
& \text { (i) }\left\langle\chi_{V} \mid \chi_{V}\right\rangle=1 \\
& \text { (ii) }\left\langle\chi_{V} \mid \chi_{W}\right\rangle=0 \text { if } V \not \equiv W
\end{aligned}
$$

Before proving this theorem, we need a sublemma.
Sublemma: Let $f: V \rightarrow W$ be any linear transformation, and set

$$
f^{\circ}=\frac{1}{|G|} \sum_{g \in G} \rho_{w}\left(g^{-1}\right) f \rho_{v}(g): V \rightarrow W
$$

Then, (a) f° is a G-homomorphism;
(b) if $V \neq W$, then $f^{\circ}=0$;
(c) if $V=W$ and $\rho_{w}=\rho_{v}$, then $f^{\circ}=\frac{\operatorname{Tr}(f)}{\operatorname{dim} V} \cdot \operatorname{Id}_{v}$.

Proof. (a) Let $h \in G$. Then,

$$
\begin{aligned}
\rho_{w}\left(h^{-1}\right) f^{\circ} \rho_{v}(h) & =\frac{1}{|G|} \sum_{g \in G} \rho_{w}\left(h^{-1}\right) \rho_{w}\left(g^{-1}\right) f \rho_{v}(g) \rho_{v}(h) \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{w}\left((g h)^{-1}\right) f \rho_{v}(g h) \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{w}\left(g^{-1}\right) f \rho_{v}(g) \\
& =f^{\circ}
\end{aligned}
$$

(b) Recall Theorem 5.7(i) (Lecture 6): If $V \not \approx W$ and $\phi: V \rightarrow W$ is a G-homomorphism, then ϕ is the zero map. By (a), f° is a G-homomorphism, so $V \not \approx W$ implies $f^{\circ}=0$.
(c) By Theorem $5.7(\mathrm{ii}), f^{\circ}=c \cdot \operatorname{Id}_{V}$ where c is some constant. We need to show that $c=\operatorname{Tr}(\mathrm{f}) / \operatorname{dim} V$. So, taking traces gives us

$$
\begin{aligned}
c \cdot \operatorname{dim} V & =\operatorname{Tr}\left(c \cdot \operatorname{Id}_{V}\right) \\
& =\operatorname{Tr}\left(f^{\circ}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left(\rho_{w}\left(g^{-1}\right) f \rho_{v}(g)\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left(\rho_{v}\left(g^{-1}\right) f \rho_{v}(g)\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(f) \\
& =\operatorname{Tr}(f)
\end{aligned}
$$

Dividing by $\operatorname{dim} V$ gives us $c=\operatorname{Tr}(f) / \operatorname{dim} V$, and the conclusion follows.
With this sublemma, we will now prove Theorem 7.8.

Proof. Choose a basis for V and W so that any linear mappings are given by matrices. Then,

$$
\begin{aligned}
\left\langle\chi_{W} \mid \chi_{V}\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{W}(g)} \chi_{V}(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \chi_{W}\left(g^{-1}\right) \chi_{V}(g) \quad(\text { Theorem } 7.5(\mathrm{c})) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left(\rho_{w}\left(g^{-1}\right)\right) \operatorname{Tr}\left(\rho_{v}(g)\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{s, t} \rho_{w}\left(g^{-1}\right)_{s s} \rho_{v}(g)_{t t} \text { where } 1 \leq s \leq \operatorname{dim} W, 1 \leq t \leq \operatorname{dim} V
\end{aligned}
$$

Now, we are going to use the sublemma we proved earlier. In particular, recall that in the statement of the sublemma, f can be any linear transformation. So, we have

$$
\left(f^{\circ}\right)_{s t}=\frac{1}{|G|} \sum_{g \in G} \sum_{k, l} \rho_{w}\left(g^{-1}\right)_{s k} f_{k l} \rho_{v}(g)_{l t}
$$

Now, we consider the two parts of the Theorem. First, suppose $V \neq W$ (part (ii)). By part (b) of the sublemma, $f^{\circ}=0$. Thus, $\left(f^{\circ}\right)_{s t}=0$ for all s, t (LHS is just 0). Now, we pick f to be the matrix such that $f_{k l}=1$ if $k=s$ and $l=t$ and $f_{k l}=0$ otherwise.

$$
f_{k l}= \begin{cases}1 & \text { if } k=s \text { and } l=t \\ 0 & \text { otherwise }\end{cases}
$$

In this case, (\star) becomes

$$
0=\frac{1}{|G|} \sum_{g \in G} \rho_{w}\left(g^{-1}\right)_{s s} \rho_{v}(g)_{t t}
$$

because every other term is zero when we sum over k, l. Since the LHS is zero, we can sum over s, t to get

$$
0=\frac{1}{|G|} \sum_{g \in G} \sum_{s, t} \rho_{w}\left(g^{-1}\right)_{s s} \rho_{v}(g)_{t t}
$$

The RHS is just $\left\langle\chi_{W} \mid \chi_{V}\right\rangle$, so it follows that $\left\langle\chi_{W} \mid \chi_{V}\right\rangle=0$.
For part (i), suppose $V=W$ and $\rho_{v}=\rho_{w}$. Using the sublemma, (\star) becomes

$$
\delta_{s t} \frac{\operatorname{Tr}(f)}{\operatorname{dim} V}=\frac{1}{|G|} \sum_{g \in G} \sum_{k, l} \rho_{v}\left(g^{-1}\right)_{s k} f_{k l} \rho_{v}(g)_{l t}
$$

Note that $s \neq t$ implies the LHS is zero as $\delta_{s t}=0$. If $s=t$, then the LHS is $\operatorname{Tr}(f) / \operatorname{dim} V$. If we define as f the same as before, then $\operatorname{Tr}(f)=1$ since $k=s=t=l$ occurs on the diagonal. Summing over s, t gives

$$
\left\langle\chi_{V} \mid \chi_{V}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \sum_{s, t} \rho_{v}\left(g^{-1}\right)_{s s} \rho_{v}(g)_{t t}=\sum_{s=t} \frac{1}{\operatorname{dim} V}=\frac{\operatorname{dim} V}{\operatorname{dim} V}=1
$$

Corollary 7.13: $V \cong W \Longleftrightarrow \chi_{V}=\chi_{W}$.
Proof. (\Longrightarrow) Theorem 7.3(i) (Middle of Lecture 8)
(\Longleftarrow) Take decompositions $V \cong I_{1}^{m_{1}} \oplus \cdots \oplus I_{k}^{m_{k}}$ and $W \cong I_{1}^{n_{1}} \oplus \cdots \oplus I_{k}^{n_{k}}$ where $\left\{I_{1}, \ldots, I_{k}\right\}$ is a complete set of irreducible representations for G.

Now, by Corollary 7.9, $\left\langle\chi_{V} \mid \chi_{I_{j}}\right\rangle=m_{j}$ and $\left\langle\chi_{W} \mid \chi_{I_{j}}\right\rangle=n_{j}$. Since $\chi_{V}=\chi_{W}$, it follows that $m_{j}=n_{j}$. So, $V \cong W$.

Character Tables

Definition 8.1: A class function on G is a function $f: G \rightarrow \mathbb{C}$ such that $f(g)=f\left(x g x^{-1}\right)$ for all $x, g \in G$. In other words, f is a complex-valued function on G that is constant on conjugacy classes.

Examples:

1) Any character χ_{V} is a class function.
2) Let $C l(g)$ be the conjugacy class of g in G. Then, the following is a class function

$$
c h_{C l(g)}(x)= \begin{cases}1 & \text { if } x \in C l(g) \\ 0 & \text { if } x \notin C l(g)\end{cases}
$$

3) The following is a class function if and only if $g \in Z(G)$, the center of the group G :

$$
\operatorname{ch}_{g}(x)= \begin{cases}1 & x=g \\ 0 & x \neq g\end{cases}
$$

