Representation Theory Notes for Iain Gordon's Class Lecture 10

Proof of the Orthogonality of Characters

Theorem 7.8: Suppose V and W are irreducible representations. Then, (i) $\langle \chi_V | \chi_V \rangle = 1$ (ii) $\langle \chi_V | \chi_W \rangle = 0$ if $V \not\cong W$.

Before proving this theorem, we need a sublemma.

Sublemma: Let $f: V \to W$ be any linear transformation, and set

$$f^{\circ} = \frac{1}{|G|} \sum_{g \in G} \rho_w(g^{-1}) f \rho_v(g) \colon V \to W.$$

Then, (a) f° is a *G*-homomorphism;

(b) if $V \not\cong W$, then $f^{\circ} = 0$;

(c) if V = W and $\rho_w = \rho_v$, then $f^\circ = \frac{\operatorname{Tr}(f)}{\dim V} \cdot \operatorname{Id}_v$.

Proof. (a) Let $h \in G$. Then,

$$\rho_w(h^{-1})f^{\circ}\rho_v(h) = \frac{1}{|G|} \sum_{g \in G} \rho_w(h^{-1})\rho_w(g^{-1})f\rho_v(g)\rho_v(h)$$
$$= \frac{1}{|G|} \sum_{g \in G} \rho_w((gh)^{-1})f\rho_v(gh)$$
$$= \frac{1}{|G|} \sum_{g \in G} \rho_w(g^{-1})f\rho_v(g)$$
$$= f^{\circ}.$$

(b) Recall Theorem 5.7(i) (Lecture 6): If $V \cong W$ and $\phi: V \to W$ is a *G*-homomorphism, then ϕ is the zero map. By (a), f° is a *G*-homomorphism, so $V \cong W$ implies $f^{\circ} = 0$.

(c) By Theorem 5.7(ii), $f^{\circ} = c \cdot \text{Id}_V$ where c is some constant. We need to show that $c = \text{Tr}(f)/\dim V$. So, taking traces gives us

$$c \cdot \dim V = \operatorname{Tr}(c \cdot \operatorname{Id}_V)$$

= $\operatorname{Tr}(f^\circ)$
= $\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(\rho_w(g^{-1})f\rho_v(g))$
= $\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(\rho_v(g^{-1})f\rho_v(g))$
= $\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(f)$
= $\operatorname{Tr}(f).$

Dividing by dim V gives us $c = \text{Tr}(f) / \dim V$, and the conclusion follows.

With this sublemma, we will now prove Theorem 7.8.

Proof. Choose a basis for V and W so that any linear mappings are given by matrices. Then,

$$\begin{aligned} \langle \chi_W \mid \chi_V \rangle &= \frac{1}{|G|} \sum_{g \in G} \overline{\chi_W(g)} \chi_V(g) \\ &= \frac{1}{|G|} \sum_{g \in G} \chi_W(g^{-1}) \chi_V(g) \quad \text{(Theorem 7.5(c))} \\ &= \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(\rho_w(g^{-1})) \operatorname{Tr}(\rho_v(g)) \\ &= \frac{1}{|G|} \sum_{g \in G} \sum_{s,t} \rho_w(g^{-1})_{ss} \rho_v(g)_{tt} \text{ where } 1 \le s \le \dim W, 1 \le t \le \dim V. \end{aligned}$$

Now, we are going to use the sublemma we proved earlier. In particular, recall that in the statement of the sublemma, f can be any linear transformation. So, we have

$$(f^{\circ})_{st} = \frac{1}{|G|} \sum_{g \in G} \sum_{k,l} \rho_w(g^{-1})_{sk} f_{kl} \rho_v(g)_{lt}. \quad (\star)$$

Now, we consider the two parts of the Theorem. First, suppose $V \not\cong W$ (part (ii)). By part (b) of the sublemma, $f^{\circ} = 0$. Thus, $(f^{\circ})_{st} = 0$ for all s, t (LHS is just 0). Now, we pick f to be the matrix such that $f_{kl} = 1$ if k = s and l = t and $f_{kl} = 0$ otherwise.

$$f_{kl} = \begin{cases} 1 & \text{if } k = s \text{ and } l = t \\ 0 & \text{otherwise.} \end{cases}$$

In this case, (\star) becomes

$$0 = \frac{1}{|G|} \sum_{g \in G} \rho_w(g^{-1})_{ss} \rho_v(g)_{tt}$$

because every other term is zero when we sum over k, l. Since the LHS is zero, we can sum over s, t to get

$$0 = \frac{1}{|G|} \sum_{g \in G} \sum_{s,t} \rho_w(g^{-1})_{ss} \rho_v(g)_{tt}$$

The RHS is just $\langle \chi_W | \chi_V \rangle$, so it follows that $\langle \chi_W | \chi_V \rangle = 0$.

For part (i), suppose V = W and $\rho_v = \rho_w$. Using the sublemma, (*) becomes

$$\delta_{st} \frac{\operatorname{Tr}(f)}{\dim V} = \frac{1}{|G|} \sum_{g \in G} \sum_{k,l} \rho_v(g^{-1})_{sk} f_{kl} \rho_v(g)_{lt}$$

Note that $s \neq t$ implies the LHS is zero as $\delta_{st} = 0$. If s = t, then the LHS is $\text{Tr}(f)/\dim V$. If we define as f the same as before, then Tr(f) = 1 since k = s = t = l occurs on the diagonal. Summing over s, t gives

$$\langle \chi_V | \chi_V \rangle = \frac{1}{|G|} \sum_{g \in G} \sum_{s,t} \rho_v(g^{-1})_{ss} \rho_v(g)_{tt} = \sum_{s=t} \frac{1}{\dim V} = \frac{\dim V}{\dim V} = 1.$$

Corollary 7.13: $V \cong W \iff \chi_V = \chi_W$.

 $\textit{Proof.}~(\Longrightarrow)$ Theorem 7.3(i) (Middle of Lecture 8)

 (\Leftarrow) Take decompositions $V \cong I_1^{m_1} \oplus \cdots \oplus I_k^{m_k}$ and $W \cong I_1^{n_1} \oplus \cdots \oplus I_k^{n_k}$ where $\{I_1, \ldots, I_k\}$ is a complete set of irreducible representations for G.

complete set of irreducible representations for G. Now, by Corollary 7.9, $\langle \chi_V | \chi_{I_j} \rangle = m_j$ and $\langle \chi_W | \chi_{I_j} \rangle = n_j$. Since $\chi_V = \chi_W$, it follows that $m_j = n_j$. So, $V \cong W$.

Character Tables

Definition 8.1: A class function on G is a function $f: G \to \mathbb{C}$ such that $f(g) = f(xgx^{-1})$ for all $x, g \in G$. In other words, f is a complex-valued function on G that is constant on conjugacy classes.

Examples:

1) Any character χ_V is a class function.

2) Let Cl(g) be the conjugacy class of g in G. Then, the following is a class function

$$ch_{Cl(g)}(x) = \begin{cases} 1 & \text{if } x \in Cl(g) \\ 0 & \text{if } x \notin Cl(g). \end{cases}$$

3) The following is a class function if and only if $g \in Z(G)$, the center of the group G:

$$ch_g(x) = \begin{cases} 1 & x = g \\ 0 & x \neq g. \end{cases}$$