SWAG lecture 8
We and a construct and a seriest
Definite set of non-knowly in the copy if
every in veg is intemple to come if and
no two of I. and is proper if = C.
Character Theory
To this sector, (i is a finite group: if = C.
Definites eactor, (i is a finite degree C-rep of C.
and chase a back of V. then write the wep p
in terms of matrices, the threader of V.
written as XV is the function
XV = C - = C.
I = -= Tr((P(g)))
we say that XV is the function
PMK:
(a) XV is independent of the choice of bass.
B) I f is given by another bass

$$S = I$$
 is given by another bass
 $S = I$ is I is I in I in I is I in I is I in I in I is I in I in I in I is I in I in I is I in I in I is I in I in I in I is I in I in I in I in I in I in I is I in I

Prop.
1) if
$$(V \subseteq W)$$
 then $X_V = X_W$
(2) if $(Ph \in G \text{ are conjugate})$ then
 $\chi_V(g) = \chi_V(h)$
Pf: (1) pick a basis for V and W,
(et $\varphi: V \rightarrow W$ is an isomorphism, written
in terms of these basis,
then, $f_W(g) = \varphi f_V(g) \varphi^{-1}$. $\forall g \in G$
 $\chi_W(g) = Tr(\varphi_W(g)) = Tr(\varphi f_V(g) \varphi^{-1})$
 $= Tr(\varphi(g)) = \chi_V(g)$
(2) $\exists x \in G$, s.t. $g = xhx^{-1}$
 $\chi_V(g) = \chi_V(h)$

Exp:
(1)
$$(3 = fe, X, X^2 \frac{3}{2}),$$

(3) has 3 invaluable reps, each of them
(3) 1-D,
 $fi(X^2) = W^{1/2}, W = exp(\frac{2\pi 1}{3}),$
 $f_i(X^2) = W^{1/2}, W = exp(\frac{2\pi 1}{3}),$
 $X_{f_0}(e) = Tr(f_0(e)) = f_0(e) = 1,$
 $I = D,$
 $X_{f_0}(e) = Tr(f_0(e)) = f_0(e) = 1,$
 $I = D,$
 $X_{f_0}(e) = Tr(f_1(x)) = W,$
 $\frac{1}{2}e - x - x^2,$
 $\frac{1}{2}e - x^2,$
 $\frac{1}{2}$

$$\begin{array}{l} \mathcal{X}_{ip}(\mathrm{Id}) = 3 \\ \mathcal{X}_{ip}((1,2)) = 1, \\ \mathcal{X}_{ip}((1,2)) = 1, \\ \mathcal{X}_{ip}((1,2,3)) = 0. \end{array}$$

$$(c), \quad \forall = 0.16 \, J = \int \sum_{i \neq i} (x \times | -\alpha \in C_{i}^{2}) \\ \operatorname{regular} \quad \operatorname{rep}; \\ L_{g}(h) = g^{i}h \\ \mathcal{X}_{reg}(g) = \int_{0}^{\infty} 1G_{i}1, \quad g^{-e} \\ 0 \quad \operatorname{eidenvise}. \end{array}$$

$$pf: \quad G \text{ is finite.} = \int G = \int g_{i}, \dots, g^{-g} \int g_{i}^{2} \\ \operatorname{result} \quad L_{g}(g) = \int_{0}^{\infty} g_{i}g_{i}^{2} = g_{i}g_{i}^{2} \\ \Rightarrow \quad \operatorname{Let} \quad E_{i}g_{j}^{2} \quad \operatorname{denote} \quad \operatorname{ide} \quad \operatorname{natrix} e_{j} \quad L_{g} \\ \operatorname{then} \quad \left[\frac{L_{g}}{2} \right]_{ij}^{2} = \int_{0}^{\infty} 1 \quad g^{i} = \frac{g_{i}g_{j}}{0} \quad \operatorname{else}, \end{array}$$

$$I_{n} \text{ particular} = \begin{cases} 1 & g = gig_{j}^{-1}. \\ 0 & else. \end{cases}$$

$$I_{d}gJ_{11} = \begin{cases} 1 & g = 1 \\ 0 & else. \end{cases}$$

$$I_{d}(g) = T_{n}[L_{g}]$$

$$= \begin{cases} n = [G]. & g = 1 \\ 0 & g \neq 1. \end{cases}$$

The Let V be a G-vep of G, geG, f(a) $X_v(e) = dim V$

(6)
$$Z_{i}(g)$$
 is a sum of news of $integraphics (10) Z_{i}(g^{+}) = \overline{Z_{i}(g)}$
(10) $Z_{i}(g^{+}) = \overline{Z_{i}(g)}$
(11) $Z_{i}(g) = \overline{Z_{i}(g)}$
(12) $Z_{i}(g) = \overline{Z_{i}(g)}$
(13) $Z_{i}(g) = \overline{Z_{i}(g)}$
(14) $Z_{i}(g) = \overline{Z_{i}(g)}$
(15) $Z_{i}(g) = \overline{Z_{i}(g)}$
(16) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17) $Z_{i}(g) = \overline{Z_{i}(g)}$
(18) $Z_{i}(g) = \overline{Z_{i}(g)}$
(19) $Z_{i}(g) = \overline{Z_{i}(g)}$
(19) $Z_{i}(g) = \overline{Z_{i}(g)}$
(10) $Z_{i}(g) = \overline{Z_{i}(g)}$
(11) $Z_{i}(g) = \overline{Z_{i}(g)}$
(11) $Z_{i}(g) = \overline{Z_{i}(g)}$
(12) $Z_{i}(g) = \overline{Z_{i}(g)}$
(13) $Z_{i}(g) = \overline{Z_{i}(g)}$
(14) $Z_{i}(g) = \overline{Z_{i}(g)}$
(15) $Z_{i}(g) = \overline{Z_{i}(g)}$
(16) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17) $Z_{i}(g) = \overline{Z_{i}(g)}$
(14) $Z_{i}(g) = \overline{Z_{i}(g)}$
(15) $Z_{i}(g) = \overline{Z_{i}(g)}$
(16) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17) $Z_{i}(g) = \overline{Z_{i}(g)}$
(17)