Swag lecture 9Wednesday, October 28, 202010:03 AM

Lose time.
Then here V be a map of G. gir G.
We have do V
(in Xig) is a sum of our of any
(i) Xig(2) Tig)
(i) Xig(2) Tig)
(ii) Xig(2) Tig)
(ii) Les (do go) to the subgroup grandel by
g, and reserve
$$f(t_{H}) \Rightarrow a$$
 ver of H.
H is an abian. Gre group,
and V as a new of the decompose
V VD $\Re(a)$ Vi we
also decompose Vi to the subgroup is inder
 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

$$(d): \chi_{V \oplus W} = \chi_{V} + \chi_{W, F}$$
find a basis for $V \oplus W$, sit.

$$f_{V \oplus W}(g) = \begin{pmatrix} f_{V}(g) & 0 \\ 0 & f_{W}(g) \end{pmatrix} \text{ for } \forall g \in G.$$

$$\int f_{V \oplus W}(g) = (Tr(f_{V}(g)) + Tr(f_{W}(g))$$

$$\int f_{V}(g) = Tr(f_{V}(g)) + Tr(f_{W}(g))$$

(c)
$$\widehat{(\mathcal{R})} := \overline{\mathcal{T}_{V}(g)} = \overline{\mathcal{T}_{V}(g)}$$

is a character \Rightarrow find a rep (s.t.
 \overline{U} is the character of \mathcal{C}^{*} .
by some exercise, \mathcal{L}^{*} is given by
 $\mathcal{L}^{*}(g) = \mathcal{L}(g^{-1})^{T}$ one can deck \mathcal{L}^{*} is a rep
 $\Rightarrow \mathcal{X}_{\mathcal{F}^{*}}(g) = \operatorname{Tr}(\mathcal{L}(g^{-1})^{T}) = \operatorname{Tr}(\mathcal{L}(g^{-1}))$
 $= \mathcal{X}_{V}(g^{-1})$
 $= \overline{\mathcal{X}_{V}(g^{-1})}$

$$\begin{split} & \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$