Hochschild Cohomology of Twisted Tensor Product Algebras

Tekin Karadag, Dustin McPhate, Pablo S. Ocal, Tolulope Oke, Sarah Witherspoon

Texas A&M University

Motivation

Theorem (Le-Zhou) [3]

Consider A and B two algebras over k a field. When considered with the correct structures, we have:

 $HH^*(A \otimes B) \cong HH^*(A) \otimes HH^*(B).$

This involves understanding the Gerstenhaber algebra structure on $HH^*(A \otimes B)$ and providing a suitable structure to $HH^*(A) \otimes HH^*(B)$.

Goal

We want to understand $HH^*(A \otimes_{\tau} B)$ in terms of $HH^*(A)$ and $HH^*(B)$. More specifically, given a resolution of A as A^e module, and a resolution of B as B^e module, we compute a resolution of $A \otimes_{\tau} B$ as $(A \otimes_{\tau} B)^e$ module.

Setup [1] [2] [4]

Let A, B two algebras over k. We say that a bijective k linear map $\tau: B \otimes A \longrightarrow A \otimes B$ is a twisting map if $\tau(1_B \otimes a) = a \otimes 1_B$ and $\tau(b \otimes 1_A) = 1_A \otimes b$ for all $a \in A, b \in B$ and:

Under this condition:

- the twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes B$ with multiplication induced by τ ,
- an A bimodule M is compatible with τ if there exists a bijective k linear map $\tau_{B,M}: B\otimes M\longrightarrow M\otimes B$ that is well behaved with respect to the algebra structure of B and the module structure of M.

Proposition

Given M and N bimodules over A and B compatible with τ , then $M \otimes N$ has a natural bimodule structure over $A \otimes_{\tau} B$.

Compatibility of resolutions

Given M an A bimodule that is compatible with τ , we say that a projective A^e resolution $P_{\bullet}(M)$ is compatible with τ if each $P_i(M)$ is compatible with τ via a map $\tau_{B,i}: B \otimes P_i(M) \longrightarrow P_i(M) \otimes B$ such that $\tau_{B,\bullet}$ is a chain map lifting $\tau_{B,M}$.

Proposition [4]

Let τ be a twisting map for A and B. Then $\mathbb{B}(A)$ and $\mathbb{B}(B)$, the bar resolutions of A and B respectively, are compatible with τ .

Technique(s)

We need to define the maps guaranteeing compatibility. For each $n \in \mathbb{N}$ define the maps $\tau_{B,n} : B \otimes \mathbb{B}_n(A) \longrightarrow \mathbb{B}_n(A) \otimes B$ recursively:

$$\tau_{B,0} := 1 \otimes \tau \circ \tau \otimes 1, \tau_{B,n} := 1 \otimes \tau \circ \tau_{B,n-1} \otimes 1.$$

Through this iteration of τ we have that A and B satisfy the prerequisites of compatibility. This is proven via commutative diagrams.

Proposition

 \bullet Commutativity with the product in B:

$$\tau_{B,n} \circ m_B \otimes 1 = 1 \otimes m_B \circ \tau_{B,n} \otimes 1 \circ 1 \otimes \tau_{B,n}.$$

• Commutativity with the bimodule structure:

$$\tau_{B,n} \circ 1 \otimes \rho_{A,n} = \rho_{A,n} \otimes 1 \circ 1 \otimes 1 \otimes \tau \circ 1 \otimes \tau_{B,n} \otimes 1 \circ \tau \otimes 1 \otimes 1.$$

Lifting to a chain map:

$$\tau_{B,n+1} \circ 1 \otimes d_n = d_n \otimes 1 \circ \tau_{B,n+2}$$
.

Analogous results for A and $\mathbb{B}(B)$ follow. In fact, when it exists, we can descend these equalities to the Koszul resolution.

Proposition

Let τ be a twisting map for A and B Koszul algebras with $\mathbb{K}(A)$ and $\mathbb{K}(B)$ their respective Koszul resolutions. Then $\mathbb{B}(A)$ or $\mathbb{K}(A)$ and $\mathbb{B}(A)$ or $\mathbb{K}(B)$ are compatible with τ .

Since the module structures are given via τ , we need to be careful about what diagrams are indeed commutative: we are using the non-commutative analogue of the usual tensor product, and so permuting its components as we would usually do is not allowed.

Key idea(s)

Seeing the Koszul resolution as lying entirely inside the bar resolution we can use our reasoning over diagrams to generalize a result (for graded algebras) in [2] that gives an explicit formula for the Gerstenhaber bracket of $HH^*(R \otimes^t S)$ in terms of elements in $HH^*(R)$ and $HH^*(S)$.

Proposition

Resolving A and B via the bar or the Koszul resolutions, we can explicitly compute the Gerstenhaber bracket of $HH^*(A \otimes_{\tau} B)$ in terms of elements in $HH^*(A)$ and $HH^*(B)$.

Applications [2] [5]

• Truncated algebras: quantum complete intersections arising from homomorphisms $t: A \otimes_{\mathbb{Z}} B \longrightarrow k^{\times}$, treatable for some $q \in k^{\times}$:

$$k\langle x,y\rangle/(x^2,y^2,xy+qyx).$$

• **Jordan plane**: arising from the map $\tau: k[y] \otimes k[x] \to k[x] \otimes k[y]$ given by $\tau(y \otimes x) = x \otimes y + x^2 \otimes 1$:

$$k\langle x,y\rangle/(yx-xy-x^2).$$

References

- [1] A. Čap, H. Schichl and J. Vanžura, On twisted tensor products of algebras, Comm. Algebra 23 (1995), no. 12, 4701–4735.
- [2] L. Grimley, V. C. Nguyen and S. Witherspoon, Gerstenhaber brackets on Hochschild cohomology of twisted tensor products, J. Noncommutative Geometry 11 (2017), no. 4, 1351–1379.
- [3] J. LE AND G. ZHOU, On the Hochschild cohomology ring of tensor products of algebras, J. Pure Appl. Algebra 218 (2014), 1463–1477.
- [4] A. V. Shepler and S. Witherspoon, Resolutions for twisted tensor products, Pacific J. Math. 298 (2019), no. 2, 445-469.
- [5] E. N. Shirikov, Two-generated graded algebras, Algebra Discrete Math. (2005), no. 3, 60-84.