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Abstract

The (ring structure of the) Hochschild cohomology of the tensor product of two algebras
was understood better thanks to Le and Zhou, who were able to express it in terms of
the Hochschild cohomology of the two algebras. Using work by Grimley, Nguyen, and
Witherspoon, as well as homotopy lifting techniques for Gerstenhaber brackets introduced
by Volkov, we generalize Le and Zhou’s result to some twisted tensor products. These have
important applications in some quantum complete intersections also studied by Lopes and
Solotar. This is joint work with Tolulope Oke and Sarah Witherspoon.
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1 Motivation

Before jumping into the definitions and the abstract concepts, let me tell you about the result
motivating some of this work: In 2014 Le and Zhou proved that HH*(A® B) =2 HH*(A)®@HH"(B)
under some finiteness conditions. It concerns Hochschild cohomology and the usual tensor product
of k-algebras, which is commutative. There are generalizations of this tensor product to the non-
commutative case, like the twisted tensor product, and it would be nice to have a similar behavior
over it, something like “HH*(A ®, B) & HH"(A4) ®,. HH*(B)”. Unfortunately, that symbol-by-
symbol translation cannot possibly be correct: the left hand side is a graded commutative algebra,
while the right hand side is (in general) a non-commutative algebra.

What is the correct translation of Le and Zhou’s result to the non-commutative case? What
techniques does it involve? Here we will attempt to address partially some of these questions.

2 Hochschild cohomology

Definition 1. Let A be a k-algebra (our algebras are unital and associative, I'm not a monster.
We define the Hochschild cohomology as): HH"(A) = Ext’i. (A, A) where A = A®Q A (is called



the enveloping algebra of A). It comes with two operations (defined on cochains):

— :HH™(A) x HH"(A) — HH™"(A),
[—, =] : HH™(A) x HH"(A) — HH™""1(A).

We call — the cup product and [—,—] the Gerstenhaber bracket. The cup product gives
(HH"(A),—) the structure of a graded commutative algebra. The Gerstenhaber bracket gives
(HH"(A), [—, —]) the structure of a graded Lie algebra. Together with some compatibility con-
ditions, they give (HH*(A),—,[—,—]) the structure of a Gerstenhaber algebra, also known as
Poisson 2-algebra, or a Poisson algebra with Poisson bracket of degree —1.

To fix ideas, this last structure can be thought of as a graded Lie algebra coming from an
associative algebra. There are some key differences, since to be precise the degree of HH*(A)
with respect to [—, —] (also called the Lie degree) is one less than the degree of HH*(A) with
respect to — (also called the homological degree).

Theorem 2 (Le-Zhou 2014). Let A and B be k-algebras, at least one of them finite dimensional.
Then (as Gerstenhaber algebras):

HH* (A ® B) = HH*(A) ® HH*(B).

Proof. Working over the bar resolution and using the cumbersome Alexander-Whitney and
Eilenberg-Zilber maps. O

You may complain, and rightfully so, that I have not told you how one can get a cup product
or a Gerstenhaber bracket on a tensor product of Gerstenhaber algebras. For now, suffice to say
that they exist and they satisfy what they should satisfy. The explicit expressions are:

(@®p) — (' ®B) = (-1)""(a—a)a (B~ f),
la®p,a' @ p] = ()" V"a, 0’| @ (8 — B) + (~)" " V(e — o) @[5, 5.

3 Twisted tensor product of algebras

Definition 3. Let A and B be k-algebras, a twisting map 7 : B A - A® B is a bijective
k-linear map (with the conditions T(lp ®a) =a® 1p, T7(0@14) =14 Qb for alla € A, b€ B,
and:

To(mp®@ma)=(ma@mp)o(l®7®1)o(T®T7)0(1®T7®1)

meaning that tuisting and multiplication “commute”. Equivalently

BeBRARA Y2 B AeBoA "2 A B A® B

mB®mAl ll@r@l

ma®mp

BA— T — 3 A@B«+——"- AR A®B®B

is a commutative diagram). The twisted tensor algebra A®, B is AQ B (as a vector space) with
(as it turns out associative) multiplication:

mas.p AR B A® B2} A9 A® Bo B™2¥ A g B.



Of course, the idea of working with HH* (A ®, B) is not to treat A ®, B as a given algebra,
but to use some information about A and B that is already known. For example, if we have
additional information about cocycles, or we know the Gerstenhaber bracket in the respective
Hochschild cohomologies of A and B, then a combination of Lemma [§] and Theorem [7] allows
computing the Gerstenhaber bracket in the Hochschild cohomology of a twisted tensor product
by a bicharacter, a notoriously difficult task.

Example 4. Let A, B be k-algebras graded by the commutative groups F, G respectively, let
t: F®zG — k* be a bicharacter. Then 7(b® a) = t(|al, |b])a ® b is a twisting map, we denote
A®'B=A®, B. It can be checked that HH*(—) is bigraded: HH"*(—). We denote:

F' = () ker(t(=,9)), G' =[] ker(t(f,—)).
geG fer
Theorem 5 (Grimley-Nguyen-Witherspoon 2017, OOW). As Gerstenhaber algebras (in the
twisted tensor product setup, and assuming the necessary finiteness conditions, we have):
HH*"'®¢ (A ®' B) =~ HH*F (A) @ HH*Y (B).

Proof. (The original proof used extended versions of the Alexander-Whitney and Eilenberg-Zilber
maps. We completely avoided them by using) Volkov’s homotopy lifting (techniques, as well as
a chain isomorphism, and a bit of work with the Koszul sign convention). [

What are Volkov’s homotopy liftings? They are nice chain maps between shifted resolutions.

Definition 6 (Volkov 2016). (Given A a k-algebra,) let up : P — A be a resolution of A-
bimodules, Ap : P — P ®4 P a diagonal map, and o € hom ge (P, A) a cocycle. A homotopy
lifting (of o with respect to Ap) is (an A-bimodule chain homomorphism) 1, : P — P[1 — m]
satisfying (some very) technical conditions (depending only on the augmentation map up, the
diagonal map Ap, and the cocycle a:

d(he) = (@ ®@1p —1p ® a)Ap, and ppthy is cohomologous to (—1)™ Laup
for some A-bimodule chain map 1) : P — P[1] for which d(v) = (up ® 1p — 1p @ up)Ap).

The definition of homotopy lifting does not depend on a specific resolution, since such diagonal
maps always exist. Moreover, Volkov proved that for any resolution, for any diagonal, and for
any cocycle, homotopy liftings always exist! Moreover, they induce the Gerstenhaber bracket in
cohomology! This is absolutely fantastic.

Theorem 7 (Volkov 2016). The bracket (given at the chain level by):
[, B] = o — (=)D By,
induces the Gerstenhaber bracket (on Hochschild cohomology).

This method is inspired in results and work by Negron and Witherspoon, who in 2016 pub-
lished what now is a special case of these homotopy liftings, where they focused on Koszul-like
resolutions. We found explicit homotopy liftings for the twist by a bicharacter.

Lemma 8 (OOW). In the twisted tensor product setup, let P — A and Q — B be resolutions
of algebras (with the necessary finiteness conditions):

Vawis = Vo @ (1g @5 B)Ag + (—1)"(a®4 1p)Ap @' g

is a homotopy lifting of a @' B (in terms of homotopy liftings of a and 3).



4 Applications and future work

The result by [LZ] can be obtained by mimicking our proof of Theorem 5| with a homotopy lifting
closely resembling the one of Lemma |8 This suggests that although finding them may seem like
a daunting task, in practice this may be feasible. Many other results are expected to allow a
similar proof by these techniques, including some that are not yet known to be true.

In [GNW] they computed the Gerstenhaber algebra structure of the quantum complete in-
tersections A, = k(z,y)/(z%,y* vy + qyz) for ¢ € k* using the techniques they developed to
prove Theorem [5| They found that in many cases HH'(A,) is a finite dimensional abelian Lie
algebra over which HH*(A,) is a module (the generators being common eigenvectors). One of the
exceptions was ¢ = 1 and char(k) # 2, where HH' (A1) is isomorphic to the Lie algebra gly(k).
It still acts on HH* (A1), but in a more complicated way.

The Jordan plane: k(x,y)/(yz—xy—x?) can be seen as k[z]®, k[y] for 7(y®z) = r@y+1°®1.
The complete Gerstenhaber algebra structure of the Jordan plane was first computed by Lopes
and Solotar, using spectral sequences and a lot of machinery. Our computations in [KMOOW]
used more elementary and completely different methods, enabled by Volkov’s homotopy lifting
techniques.

The use of Volkov’s homotopy liftings seems to be the way of tackling this type of problems,
and they should enable elementary computations of examples like A,.

Thank you for your time!
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