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Why do we care?

1 Sometimes we can understand the (co)homology theory of a tensor
product in terms of the (co)homology of the original factors.

2 This understanding relies on the tensor product of projective
resolutions for the factor algebras being a projective resolution for the
tensor product of the algebras.

3 Čap, Schichl, and Vanžura introduced twisted tensor products in 1995
as an analogue for non commutative algebras.

4 In concrete settings, a construction similar to the commutative case
have been achieved, yielding similar results.

5 Shepler and Witherspoon unify many of these constructions in 2018.
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Computational use in concrete settings

1 Negron and Witherspoon in 2016 develop techniques to construct
Gerstenhaber brackets on Hochschild cohomology.

2 Grimley, Nguyen and Witherspoon augmented these techniques in
2017, constructing and computing the Gerstenhaber bracket in some
twisted tensor products.

3 Can these conditions be relaxed to compute the Gerstenhaber bracket
of a twisted tensor product? If so, how much?
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Algebras over a ring (I)

Definition

Let k be an associative commutative ring. We say that A is a k algebra if
it is a k module and a ring, where the product µ : A× A −→ A is bilinear.

Examples:

Commutative: k[x ], k[x1, . . . , xn], k[x ]/(xn) for n ∈ N.

Noncommutative: k〈x , y〉/(yx − xy − x2).

Definition

Let A be a k algebra. We define Aop the opposite algebra of A as the
vector space A with multiplication µop : A× A −→ A given by:

µop(a, b) = µ(b, a) for all a, b ∈ A.

Pablo S. Ocal (TAMU) Twisted Tensor Product and Compatibility March 2, 2019 7 / 35



Algebras over a ring (and II)

Definition

Let A be a k algebra. We define Ae the enveloping algebra of A as the
vector space A⊗ Aop with multiplication µe : Ae × Ae −→ Ae given by:

µe((a1 ⊗ b1), (a2 ⊗ b2)) = µ(a1, a2)⊗ µop(b1, b2) = a1a2 ⊗ b2b1

for all a1, a2, b1, b2 ∈ A.

Examples:

k[x ]e = k[x ]⊗ k[y ] ∼= k[x , y ].

k[x ]/(xn)e = k[x ]/(xn)⊗ k[y ]/(yn) ∼= k[x , y ]/(xn, yn) for n ∈ N.

For technical reasons, from now on we take k to be a field.
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Twisted tensor product algebra

Definition

Let A, B two algebras over k . We say that a bijective k linear map
τ : B ⊗ A −→ A⊗ B is a twisting map if τ(1B ⊗ a) = a⊗ 1B and
τ(b ⊗ 1A) = 1A ⊗ b for all a ∈ A, b ∈ B and:

B ⊗ B ⊗ A⊗ A

	

mB⊗mA //

1⊗τ⊗1
��

B ⊗ A
τ // A⊗ B

B ⊗ A⊗ B ⊗ A
τ⊗τ // A⊗ B ⊗ A⊗ B

1⊗τ⊗1// A⊗ A⊗ B ⊗ B

mA⊗mB

OO

Definition

Under this condition, the twisted tensor product algebra A⊗τ B is the
vector space A⊗ B with multiplication:

mτ : (A⊗ B)⊗ (A⊗ B)
1⊗τ⊗1// A⊗ A⊗ B ⊗ B

mA⊗mB// A⊗ B
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Bimodule compatible with the twisting (I)

Definition

We say that an A bimodule M, whose bimodule structure is given by
ρA : A⊗M ⊗ A −→ M, is compatible with τ if there exist a bijective k
linear map τB,M : B ⊗M −→ M ⊗ B such that:

1 τB,M is well behaved with respect to the algebra structure of B,

2 the module structure of M is well behaved (via τB,M) with respect to
the algebra structure of B and the twisting map τ .

We analogously define how a B bimodule N is compatible with τ via τN,A.
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Bimodule compatible with the twisting (and II)

B ⊗ B ⊗M
1⊗τB,M //

mB⊗1
��

B ⊗M ⊗ B
τB,M⊗1 // M ⊗ B ⊗ B

1⊗mB

��
B ⊗M

τB,M // M ⊗ B

B ⊗ A⊗M ⊗ A

1⊗ρA

OO

τ⊗1⊗1
��

A⊗M ⊗ A⊗ B

ρA⊗1

OO

A⊗ B ⊗M ⊗ A
1⊗τB,M⊗1 // A⊗M ⊗ B ⊗ A

1⊗1⊗τ

OO

Pablo S. Ocal (TAMU) Twisted Tensor Product and Compatibility March 2, 2019 11 / 35



Twisted bimodule structure of the tensor product

If M and N are A and B bimodules via ρA and ρB compatible with τ via
τB,M and τN,A respectively, then:

(A⊗τ B)⊗ (M ⊗ N)⊗ (A⊗τ B)

	1⊗τB,M⊗τN,A⊗1
��

ρA⊗τB // M ⊗ N

A⊗M ⊗ B ⊗ A⊗ N ⊗ B
1⊗1⊗τ⊗1⊗1// A⊗M ⊗ A⊗ B ⊗ N ⊗ B

ρA⊗ρB

OO

defines a natural structure of A⊗τ B bimodule over M ⊗ N via ρA⊗τB .
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Compatibility of resolutions (I)

Let P•(M) be an Ae projective resolution of M and P•(N) a Be projective
resolution of N. Consider the complexes P•(N)⊗ A, A⊗ P•(N),
P•(M)⊗ B, B ⊗ P•(M).

· · · −→ P2(M) −→ P1(M) −→ P0(M) −→ M −→ 0,

· · · −→ P2(N) −→ P1(N) −→ P0(N) −→ N −→ 0.

As exact sequences of vector spaces any k linear maps
τN,A : N ⊗ A −→ A⊗ N and τB,M : B ⊗M −→ M ⊗ B can be lifted to k
linear chain maps:

τP•(N),A : P•(N)⊗A −→ A⊗P•(N), τB,P•(M) : B⊗P•(M) −→ P•(M)⊗B,

denoted by τi ,A := τPi (N),A and τB,i := τB,Pi (M).
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Compatibility of resolutions (and II)

Definition

Given M an A bimodule that is compatible with τ , we say that a projective
Ae resolution P•(M) is compatible with τ if each Pi (M) is compatible
with τ via a map τB,i : B ⊗ Pi (M) −→ Pi (M)⊗ B such that τB,• is a
chain map lifting τB,M .

Given N a B bimodule compatible with τ , we can analogously define how
a projective Be resolution P•(N) is compatible with τ via τ•,A.
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Special modules and bimodules over an algebra

Remark

A k algebra A is a left Ae module under:

(a⊗ b) · c = acb for all a, b, c ∈ A.

In particular HH•(A) := HH•(A,A) is well defined.

Remark

The tensor product A⊗n = A⊗
(n)
· · · ⊗A is is a left Ae module under:

(a⊗ b) · (c1 ⊗ c2 · · · ⊗ cn−1 ⊗ cn) = ac1 ⊗ c2 · · · ⊗ cn−1 ⊗ cnb

for all a, b, c1, . . . , cn ∈ A.
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The bar resolution

Consider the sequence of left Ae modules:

· · · d3−→ A⊗4
d2−→ A⊗3

d1−→ A⊗ A
µ−→ A −→ 0

with:

dn(a0 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for all a0, . . . , an+1 ∈ A. This is a complex by direct computation. It has a
contracting homotopy sn : A⊗(n+2) −→ A⊗(n+3):

sn(a0 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ · · · ⊗ an+1

so the complex is exact. Moreover since A⊗n ∼=
⊕

i∈I kαi as k modules:

A⊗(n+2) ∼= Ae ⊗ A⊗n ∼=
⊕
i∈I

Ae(1⊗ 1⊗ αi )

so A⊗(n+2) are free Ae modules, and the complex is a free resolution.
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The bar resolution is compatible with the twisting

Proposition

Let τ be a twisting map for the algebras A and B. Then B(A) and B(B),
the bar resolutions of A and B respectively, are compatible with τ .

We need to say via which maps.

Definition

For each n ∈ N define the maps τB,n : B ⊗ Bn(A) −→ Bn(A)⊗ B
recursively: τB,0 := 1⊗ τ ◦ τ ⊗ 1, τB,n := 1⊗ τ ◦ τB,n−1 ⊗ 1.

We define analogously τn,A. Notice that τB,n also satisfies
τB,0 := 1⊗ τ ◦ τ ⊗ 1, τB,n := 1⊗ τB,n−1 ◦ τ ⊗ 1.
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Proof.

Both A and B satisfy the prerequisites of compatibility necessary to ask
whether B(A) and B(B) may be compatible with τ .
To see that B(A) is compatible with τ we need that for all n ∈ N:

1 Commutativity with the product in B:

τB,n ◦mB ⊗ 1 = 1⊗mB ◦ τB,n ⊗ 1 ◦ 1⊗ τB,n.

2 Commutativity with the bimodule structure:

τB,n ◦ 1⊗ ρA,n = ρA,n ⊗ 1 ◦ 1⊗ 1⊗ τ ◦ 1⊗ τB,n ⊗ 1 ◦ τ ⊗ 1⊗ 1.

3 Lifting to a chain map:

τB,n+1 ◦ 1⊗ dn = dn ⊗ 1 ◦ τB,n+2.

The second part of the statement follows analogously.
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Compatibility of A and B as bimodules (I)

Lemma

Let τ be a twisting map for the algebras A and B. Then A and B, seen as
an Ae module and a Be module respectively, are compatible with τ .

Proof.

To check the commutativity of the diagram:

B ⊗ B ⊗ A
1⊗τ //

mB⊗1
��

B ⊗ A⊗ B
τ⊗1 // A⊗ B ⊗ B

1⊗mB

��
B ⊗ A

τ // A⊗ B

we just have to set 1A the identity element of A in the definition of τ .
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Compatibility of A and B as bimodules (and I)

Proof.

We can expand the other diagram as follows:

B ⊗ A⊗ A⊗ A
1⊗1⊗mA //

τ⊗1⊗1

��

B ⊗ A⊗ A
1⊗mA //

τ⊗1
��

B ⊗ A
τ // A⊗ B

A⊗ B ⊗ A
1⊗τ // A⊗ A⊗ B

mA⊗1

OO

A⊗ B ⊗ A⊗ A
1⊗τ⊗1//

1⊗1⊗mA

55

A⊗ A⊗ B ⊗ A
1⊗1⊗τ // A⊗ A⊗ A⊗ B

1⊗mA⊗1

OO

the top right and bottom diagrams are commutative by the above, and the
left square is commutative because the functions are acting in terms of the
tensor product that do not interfere with each other.
The second part of the statement follows analogously.
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Compatibility maps (I)

Lemma

Then the maps τB,• satisfy:

B ⊗ A⊗(n+2)

	

τB,n //

1⊗1n⊗mA

��

A⊗(n+2) ⊗ B

1n⊗mA⊗1
��

B ⊗ A⊗(n+1)
τB,n−1

// A⊗(n+1) ⊗ B

The maps τ•,A satisfy the analogous diagram.
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Compatibility maps (and II)

Proof.

The result is proven by induction, where the case n = 0 has just been
done. Consider the hypothesis true for n − 1, check N 3 n ≥ 1:

B ⊗ A⊗(n+2)

τB,n

��

1⊗1n⊗mA //
τB,n−1⊗1

((

B ⊗ A⊗(n+1)

τB,n−1

��

τB,n−2⊗1

ww
A⊗(n+1) ⊗ B ⊗ A

1⊗τvv

1n−1⊗mA⊗1
// A⊗n ⊗ B ⊗ A

1⊗τ ''
A⊗(n+2) ⊗ B

1n⊗mA⊗1 // A⊗(n+1) ⊗ B

the left and right triangles are commutative by the definition of τB,• as a
recursion, the top triangle is commutative by the induction hypothesis,
and the bottom square commutes because the functions are acting in
terms of the tensor product that do not interfere with each other.
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Commutativity with the product in B

Lemma

Let τ be a twisting map for the algebras A and B. Then in the above
context we have that for all n ∈ N:

τB,n ◦mB ⊗ 1 = 1⊗mB ◦ τB,n ⊗ 1 ◦ 1⊗ τB,n.

An analogous result follows for τ•,A. To prove this, we will be interpreting
it as a diagram.

Proof.

We again use induction. The case n = −1 has been proved above.
Consider the hypothesis true for n− 1, we now expand the case n ∈ N and
obtain commutativity because:
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Proof.

B ⊗ B ⊗ A⊗(n+2)
1⊗τB,n //

mB⊗1

��

1⊗τB,n−1⊗1 ))

B ⊗ A⊗(n+2) ⊗ B
τB,n⊗1 //

τB,n−1⊗1

$$

A⊗(n+2) ⊗ B ⊗ B

1⊗mB

||

B ⊗ A⊗(n+1) ⊗ B ⊗ A

1⊗1⊗τB,A

OO

τB,n−1⊗1⊗1

��
A⊗(n+1) ⊗ B ⊗ B ⊗ A

1⊗mB⊗1

��

1⊗1⊗τB,A
// A⊗(n+1) ⊗ B ⊗ A⊗ B

1⊗τB,A⊗1

OO

A⊗(n+1) ⊗ B ⊗ A
1⊗τB,A

))
B ⊗ A⊗(n+2)

τB,n //

τB,n−1⊗1

55

A⊗(n+2) ⊗ B

the left diagram is the induction hypothesis, the top left, top right and
bottom triangles are the definition of τB,n, the right diagram is the case
n = −1, and in the central square the functions do not interfere.
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Commutativity with the bimodule structure

Lemma

Let τ be a twisting map for the algebras A and B. Then in the above
context we have that for all n ∈ N:

τB,n ◦ 1⊗ ρA,n = ρA,n ⊗ 1 ◦ 1⊗ 1⊗ τ ◦ 1⊗ τB,n ⊗ 1 ◦ τ ⊗ 1⊗ 1.

An analogous result follows for τ•,A. Again, we interpret this as a diagram.

Proof.

We again use induction. This time we need the case n = −1 as above, and
also the case n = 0:
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Proof.

B ⊗ A⊗ A⊗ A⊗ A
1⊗mA⊗1⊗1

//

τ⊗1⊗1⊗1

��

B ⊗ A⊗ A⊗ A
1⊗1⊗mA //

τ⊗1⊗1

��

B ⊗ A⊗ A
τ⊗1 // A⊗ B ⊗ A

1⊗τ

��
A⊗ B ⊗ A⊗ A⊗ A

1⊗τ⊗1⊗1

��

A⊗ B ⊗ A⊗ A

1⊗1⊗mA

22

A⊗ A⊗ B

A⊗ A⊗ B ⊗ A⊗ A

1⊗1⊗τ⊗1

��

mA⊗1⊗1⊗1

55

1⊗1⊗1⊗mA// A⊗ A⊗ B ⊗ A
1⊗1⊗τ //

mA⊗1⊗1

66

A⊗ A⊗ A⊗ B

mA⊗1⊗1

77

A⊗ A⊗ A⊗ B ⊗ A
1⊗1⊗1⊗τ

// A⊗ A⊗ A⊗ A⊗ B

1⊗1⊗mA⊗1

OO

mA⊗1⊗1⊗1
// A⊗ A⊗ A⊗ B

1⊗mA⊗1

>>

the top left and bottom left diagrams are commutative as seen above, and
the remaining squares are commutative because the functions are acting in
terms of the tensor product that do not interfere with each other.
A scary diagram can be used to finish induction.

Pablo S. Ocal (TAMU) Twisted Tensor Product and Compatibility March 2, 2019 27 / 35



Lifting to a chain map

Lemma

Let τ be a twisting map for the algebras A and B. Then in the above
context we have that for all n ∈ N:

τB,n+1 ◦ 1⊗ dn = dn ⊗ 1 ◦ τB,n+2.

An analogous result follows for τ•,A. As usual, we interpret it as a diagram.

Proof.

We again use induction. The case n = 0 has been proved above. Consider
the hypothesis true for n − 1, we check n ∈ N:

B ⊗ A⊗(n+2) 1⊗dn //

τB,n

��

B ⊗ A⊗(n+1)

τB,n−1

��
A⊗(n+2) ⊗ B

dn⊗1 // A⊗(n+1) ⊗ B
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Proof.

Now 1⊗ dn = 1⊗mA ⊗ 1− 1⊗ 1⊗ dn−1, dn ⊗ 1 = mA ⊗ 1− 1⊗ dn−1 ⊗ 1
so we can express the previous diagram as the sum of the following two:

B ⊗ A⊗(n+2)
1⊗mA⊗1n //

τB,n

��

τB,n−1⊗1

''

B ⊗ A⊗(n+1)

τB,n−1

��

τB,n−2⊗1

xx
A⊗(n+1) ⊗ B ⊗ A

1⊗τ
ww

mA⊗1

// A⊗n ⊗ B ⊗ A

1⊗τ
&&

A⊗(n+2) ⊗ B
mA⊗1 // A⊗(n+1) ⊗ B

B ⊗ A⊗(n+2)
±1⊗1⊗dn−1 //

τB,n

��

τ⊗1

''

B ⊗ A⊗(n+1)

τB,n−1

��

τ⊗1

ww
A⊗(n−1) ⊗ B ⊗ A

1⊗τB,n−1ww

±1⊗1⊗dn−1

// A⊗(n−2) ⊗ B ⊗ A

1⊗τB,n−2 ''
A⊗(n+2) ⊗ B

±1⊗dn−1⊗1
// A⊗(n+1) ⊗ B
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Hochschild Cohomology

Here having k to be a field does matter.

Definition

The Hochschild cohomology of a k algebra A with coefficients in a left Ae

module M is HH•(A,M) =
⊕

n∈NHHn(A,M), where for n ∈ N:

HHn(A,M) = ExtnAe (A,M).

Hence to compute the Hochschild cohomology we need Ae projective
resolutions of A. We now provide a canonical one.
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Hochschild cohomology of the tensor product

It is possible (under some finiteness assumptions) to understand the
(co)homology theory of a tensor product in terms of the (co)homology of
the original factors:

Theorem (Le-Zhou)

There is an isomorphism of Gerstenhaber algebras:

HH∗(A⊗ B) ∼= HH∗(A)⊗ HH∗(B).
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Hochschild cohomology of the twisted tensor product

Does it make sense (i.e. is it defined) to take HH∗(A)⊗τ HH∗(B)? Under
which hypothesis?

Question

Is there an isomorphism:

HH∗(A⊗τ B) ∼= HH∗(A)⊗τ HH∗(B)?

As (graded) k modules? As (graded) algebras? As Gerstenhaber algebras?
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Something to take home

Visualization of equations through diagrams enable sound logical
reasoning and lets us understand what is happening.

Hochschild cohomology of individual algebras can be used to obtain
Hochschild cohomology of tensor products of algebras.

In non commutative algebra the usual tensor product takes the form
of a twisted tensor product. Understanding it is useful.

Pablo S. Ocal (TAMU) Twisted Tensor Product and Compatibility March 2, 2019 34 / 35



Thank you!
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