USING RELATIVE HOMOLOGICAL ALGEBRA IN HOCHSCHILD COHOMOLOGY

Pablo S. Ocal

Texas A&M University

April 21, 2018

Outline

- Motivation
- Relative Homological Algebra
- 3 Hochschild Cohomology
- Future outlook

Why do we care?

- Homology is a useful tool in studying algebraic objects: it provides insight into their properties and structure(s).
- When algebraic objects appear in other fields (representation theory, geometry, topology...), homology encodes meaningful information to that field (semisimplicity, genus, path-connectedness...).
- Hochschild cohomology encodes information on deformations, smoothness and representations of algebras, among others.

Relative exact sequences

Definition

Let R be a ring, a sequence of R modules:

$$\cdots \longrightarrow C_i \stackrel{t_i}{\longrightarrow} C_{i-1} \longrightarrow \cdots$$

is called *exact* if $Im(t_i) = Ker(t_{i-1})$.

Definition

Let $1_R \in S \subseteq R$ a subring. An exact sequence of R modules is called (R, S) exact if $Ker(t_i)$ is a direct summand of C_i as an S module.

This is equivalent to the sequence splitting, and to the existence of an S homotopy (hence the sequence is exact as S modules).

Relative projective modules (I)

Definition

An R module P is said to be (R,S) projective if, for every (R,S) exact sequence $M \stackrel{g}{\longrightarrow} N \longrightarrow 0$ and every R homomorphism $h: P \longrightarrow N$, there is an R homomorphism $h': P \longrightarrow M$ with gh' = h.

Relative projective modules (and II)

Definition

An R module P is said to be (R,S) projective if, for every exact sequence $M \stackrel{g}{\longrightarrow} N \longrightarrow 0$ of R modules, every R homomorphism $f: P \longrightarrow N$ and every S homomorphism $h: P \longrightarrow M$ with gh = f, there is an R homomorphism $h': P \longrightarrow M$ with gh' = f.

Some lifting properties

Lemma

For every S module N, the R module $R \otimes_S N$ is (R, S) projective.

Proposition

Let V be an (R, S) projective R module, $f: M \longrightarrow N$ a homomorphism of right R modules with:

$$M \otimes_S V \stackrel{f \otimes 1_V}{\longrightarrow} N \otimes_S V$$
, then $M \otimes_R V \stackrel{f \otimes 1_V}{\longrightarrow} N \otimes_R V$.

Relative Comparison Theorem

Theorem

Let M and N be R modules and two chain complexes (that is, the composition of consecutive homomorphisms is zero):

$$P: \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

 $Q: \cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow N \longrightarrow 0$

such that P_i is (R, S) projective for all $i \in \mathbb{N}$ and Q_{\bullet} is (R, S) exact. If $f: M \longrightarrow N$ is an R homomorphism then there exists a chain map $f_{\bullet}: P_{\bullet} \longrightarrow Q_{\bullet}$ lifting it, that is, the following diagram is commutative:

Relative Ext

Let M and N be R modules and:

$$P: \quad \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \longrightarrow 0$$

an (R, S) exact sequence where P_i is (R, S) projective for all $i \in \mathbb{N}$ (that is an (R, S) projective resolution). Consider the complex $\operatorname{Hom}_R(P_{\bullet}, N)$:

$$0 \longrightarrow \operatorname{Hom}_R(M,N) \xrightarrow{d_0^*} \operatorname{Hom}_R(P_0,N) \xrightarrow{d_1^*} \operatorname{Hom}_R(P_1,N) \xrightarrow{d_2^*} \cdots$$

Definition

We define:

$$\begin{split} &\operatorname{Ext}^0_{(R,S)}(M,N) = \operatorname{Ker}(d_1^*), \\ &\operatorname{Ext}^n_{(R,S)}(M,N) = \operatorname{Ker}(d_{n+1}^*)/\operatorname{Im}(d_n^*) \text{ for } n \geq 1. \end{split}$$

Analogous results and recovery of Homological Algebra

In virtue of the Comparison Theorem:

- The $\operatorname{Ext}^n_{(R,S)}(M,N)$ for $n\in\mathbb{N}$ are independent of the resolution.
- A pair of R homomorphisms $f: M \longrightarrow M'$, $g: N \longrightarrow N'$ induce a unique $\phi_{f,g}: \operatorname{Ext}^n_{(R,S)}(M',N) \longrightarrow \operatorname{Ext}^n_{(R,S)}(M,N')$ and functoriality.

Remark

- If S is semisimple, meaning that every R exact sequence is (R, S) exact, or
- If *R* is projective as an *S* module, then:

$$\operatorname{Ext}^n_{(R,S)}(M,N)=\operatorname{Ext}^n_R(M,N) \text{ for } n\in\mathbb{N}.$$

Algebras over a ring (I)

Definition

Let k be an associative commutative ring. We say that A is a k algebra if it is a k module and a ring, where the product $\mu: A \times A \longrightarrow A$ is bilinear.

Examples:

- k[x].
- $k[x_1,\ldots,x_n]$.
- $k[x]/(x^n)$ for $n \in \mathbb{N}$.

There are noncommutative algebras.

Algebras over a ring (II)

Definition

Let A be a k algebra. We define A^{op} the opposite algebra of A as the vector space A with multiplication $\mu_{op}: A \times A \longrightarrow A$ given by:

$$\mu_{op}(a,b) = \mu(b,a)$$
 for all $a,b \in A$.

Examples:

- $k[x]^{op} = k[y]$.
- $k[x_1,...,x_n]^{op} = k[y_1,...,y_n].$
- $k[x]/(x^n)^{op} = k[y]/(y^n)$ for $n \in \mathbb{N}$.

Since they are commutative.

Algebras over a ring (and III)

Definition

Let A be a k algebra. We define A^e the *enveloping algebra of* A as the vector space $A \otimes A^{op}$ with multiplication $\mu^e : A^e \times A^e \longrightarrow A^e$ given by:

$$\mu^{e}((a_{1}\otimes b_{1}),(a_{2}\otimes b_{2}))=\mu(a_{1},a_{2})\otimes\mu_{op}(b_{1},b_{2})=a_{1}a_{2}\otimes b_{2}b_{1}$$

for all $a_1, a_2, b_1, b_2 \in A$.

Examples:

- $k[x]^e = k[x] \otimes k[y] \cong k[x, y].$
- $k[x_1,...,x_n]^e = k[x_1,...,x_n] \otimes k[y_1,...,y_n] \cong k[x_1,...,x_n,y_1,...,y_n].$
- $k[x]/(x^n)^e = k[y]/(y^n) \otimes k[y]/(y^n) \cong k[x,y]/(x^n,y^n)$ for $n \in \mathbb{N}$.

Modules and bimodules over an algebra

Remark

There is a one to one correspondence between the bimodules M over a k algebra A and the (right or left) modules M over A^e .

Note that A is a left A^e module under:

$$(a \otimes b) \cdot c = acb$$
 for all $a, b, c \in A$.

More generally, $A^{\otimes n} = A \otimes \cdots \otimes A$ is is a left A^e module under:

$$(a \otimes b) \cdot (c_1 \otimes c_2 \cdots \otimes c_{n-1} \otimes c_n) = ac_1 \otimes c_2 \cdots \otimes c_{n-1} \otimes c_n b$$

for all $a, b, c_1, \ldots, c_n \in A$.

The Bar sequence

Consider the sequence of left A^e modules:

$$\cdots \xrightarrow{d_3} A^{\otimes 4} \xrightarrow{d_2} A^{\otimes 3} \xrightarrow{d_1} A \otimes A \xrightarrow{\mu} A \longrightarrow 0$$

with:

$$d_n(a_0\otimes\cdots\otimes a_{n+1})=\sum_{i=0}^n (-1)^i a_0\otimes\cdots\otimes a_i a_{i+1}\otimes\cdots\otimes a_{n+1}$$

for all $a_0, \ldots, a_{n+1} \in A$. This is a complex.

The Bar resolution

The bar sequence has a contracting homotopy $s_n: A^{\otimes (n+2)} \longrightarrow A^{\otimes (n+3)}$:

$$s_n(a_0\otimes\cdots\otimes a_{n+1})=1\otimes a_0\otimes\cdots\otimes a_{n+1}$$

for all $a_0, \ldots, a_{n+1} \in A$.

Definition

Let A be a k algebra. We define the *bar complex of* A as the truncated complex:

$$B(A): \cdots \xrightarrow{d_3} A^{\otimes 4} \xrightarrow{d_2} A^{\otimes 3} \xrightarrow{d_1} A \otimes A \longrightarrow 0$$

and write $B_n(A) = A^{\otimes (n+2)}$ for $n \in \mathbb{N}$.

Hochschild Cohomology

Let M a left A^e module, consider the complex $\operatorname{Hom}_{A^e}(B(A), M)$:

$$0 \longrightarrow \operatorname{Hom}_{A^e}(A \otimes A, M) \stackrel{d_1^*}{\longrightarrow} \operatorname{Hom}_{A^e}(A^{\otimes 3}, M) \stackrel{d_2^*}{\longrightarrow} \operatorname{Hom}_{A^e}(A^{\otimes 4}, M) \stackrel{d_3^*}{\longrightarrow} \cdots$$

Definition

The *Hochschild cohomology* of A with coefficients in a left A^e module M is the cohomology of $\operatorname{Hom}_{A^e}(B(A), M)$, equivalently:

$$HH^n(A, M) = H^n(\operatorname{Hom}_{A^e}(A^{\otimes \bullet}, M)) = \operatorname{Ker}(d_{n+1}^*)/\operatorname{Im}(d_n^*)$$

for $n \in \mathbb{N}$.

This construction reminds of derived functors, particularly Ext.

Hochschild Cohomology from Relative Homological Algebra

Theorem

Let M be a left A^e module and consider $k \subset A^e$ as a subring. Then:

$$HH^n(A, M) = \operatorname{Ext}_{(A^e,k)}^n(A, M)$$
 for $n \in \mathbb{N}$.

In particular when k is a field, HH^{\bullet} is Ext^{\bullet} .

Ongoing research

How good is relative Hochschild Cohomology?

$$HH^n_{(A,B)}(A,M)=\operatorname{Ext}^n_{(A^e,B\otimes A^{op})}(A,M)$$

Does it have a Gerstenhaber bracket?

$$[f,g] = f \circ g - (-1)^{(m-1)(n-1)}g \circ f$$

Something to take home

- Hochschild cohomology is intimately related with the Ext functor.
- Over a field this is well behaved and fairly well understood.
- There is a lot of progress to be made in natural generalizations.

pso@math.tamu.edu

Thank you!