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Motivation

Why do we care?

• Homology is a useful tool in studying algebraic objects: it encodes
meaningful information and provides insight into their properties
and structure(s).

• Hochschild cohomology encodes information on deformations,
smoothness and representations of algebras, among others.

• When Hochschild cohomology is finitely generated, it realizes a
structure on support varieties in which geometers are extremely
interested.
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Hochschild Cohomology

Algebras over a ring (I)

Definition

Let k be an associative commutative ring. We say that A is a k algebra if
it is a k module and a ring, where the product µ : A× A −→ A is bilinear.

Examples:

• Commutative: k[x ], k[x1, . . . , xn], k[x ]/(xn) for n ∈ N.

• Noncommutative: k〈x , y〉/(yx − xy − x2).

Definition

Let A be a k algebra. We define Aop the opposite algebra of A as the
vector space A with multiplication µop : A× A −→ A given by:

µop(a, b) = µ(b, a) for all a, b ∈ A.
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Hochschild Cohomology

Algebras over a ring (and II)

Definition

Let A be a k algebra. We define Ae the enveloping algebra of A as the
vector space A⊗ Aop with multiplication µe : Ae × Ae −→ Ae given by:

µe((a1 ⊗ b1), (a2 ⊗ b2)) = µ(a1, a2)⊗ µop(b1, b2) = a1a2 ⊗ b2b1

for all a1, a2, b1, b2 ∈ A.

Examples:

• k[x ]e = k[x ]⊗ k[y ] ∼= k[x , y ].

• k[x ]/(xn)e = k[x ]/(xn)⊗ k[y ]/(yn) ∼= k[x , y ]/(xn, yn) for n ∈ N.
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Hochschild Cohomology

Hochschild Cohomology

Definition

The Hochschild cohomology of a k algebra A with coefficients in a left Ae

module M is HH•(A,M) =
⊕

n∈N HHn(A,M), where for n ∈ N:

HHn(A,M) = ExtnAe (A,M).

Hence to compute the Hochschild cohomology we need Ae projective
resolutions of A. We now provide a canonical one.
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Hochschild Cohomology

Special modules and bimodules over an algebra

Remark

A k algebra A is a left Ae module under:

(a⊗ b) · c = acb for all a, b, c ∈ A.

In particular HH•(A) := HH•(A,A) is well defined.

Remark

The tensor product A⊗n = A⊗
(n)
· · · ⊗A is is a left Ae module under:

(a⊗ b) · (c1 ⊗ c2 · · · ⊗ cn−1 ⊗ cn) = ac1 ⊗ c2 · · · ⊗ cn−1 ⊗ cnb

for all a, b, c1, . . . , cn ∈ A.
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Hochschild Cohomology

The Bar resolution
Consider the sequence of left Ae modules:

· · · d3−→ A⊗4
d2−→ A⊗3

d1−→ A⊗ A
µ−→ A −→ 0

with:

dn(a0 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for all a0, . . . , an+1 ∈ A. This is a complex by direct computation. It has a
contracting homotopy sn : A⊗(n+2) −→ A⊗(n+3):

sn(a0 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ · · · ⊗ an+1

so the complex is exact. Moreover since A⊗n ∼=
⊕

i∈I kαi as k modules:

A⊗(n+2) ∼= Ae ⊗ A⊗n ∼=
⊕
i∈I

Ae(1⊗ 1⊗ αi )

so A⊗(n+2) are free Ae modules, and the complex is a free resolution.
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Hochschild Cohomology

Cochains in the Bar resolution (or how to compute Ext)

Given:
· · · d3−→ A⊗4

d2−→ A⊗3
d1−→ A⊗ A −→ 0

apply HomAe (−,M):

0 −→ HomAe (A⊗A,M)
d∗1−→ HomAe (A⊗3,M)

d∗2−→ HomAe (A⊗4,M)
d∗3−→ · · ·

using HomAe (A⊗(n+2),M) ∼= Homk(A⊗n,M) we obtain:

0 −→ Homk(k ,A)
d∗1−→ Homk(A,M)

d∗2−→ Homk(A⊗ A,M)
d∗3−→ · · ·

which can still compute HH•(A,M). We are interested in M = A.

Definition

The elements of Homk(A⊗n,M) are called Hochschild cochains with
coefficients in M.
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Hochschild Cohomology

Cup product at the cochain level

Definition

Let f ∈ Homk(A⊗m,A) and g ∈ Homk(A⊗n,A). The cup product f ^ g
is the element of Homk(A⊗(m+n),A) given by:

(f ^ g)(a1 ⊗ · · · ⊗ am+n) = f (a1 ⊗ · · · ⊗ am)g(am+1 ⊗ · · · ⊗ am+n)

for all a1, . . . , am+n ∈ A. If m = 0 this is interpreted as:

(f ^ g)(a1 ⊗ · · · ⊗ am+n) = f (1)g(a1 ⊗ · · · ⊗ an)

and similarly if n = 0.
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Hochschild Cohomology

Properties of the cup product

Proposition

Let f ∈ Homk(A⊗m,A), g ∈ Homk(A⊗n,A), and h ∈ Homk(A⊗l ,A).

1 The cup product is associative:

(f ^ g) ^ h = f ^ (g ^ h).

2 It satisfies:

d∗m+n+1(f ^ g) = (d∗m+1(f )) ^ g + (−1)mf ^ (d∗n+1(g)).

Theorem

• The cup product on HH•(A) is graded associative.

• The cup product on HH•(A) is graded commutative.

• The cup product on cochains forms a differential graded algebra.
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Hochschild Cohomology

Gerstenhaber bracket

Definition

Let f ∈ Homk(A⊗m,A) and g ∈ Homk(A⊗n,A). The Gerstenhaber
bracket [f , g ] is the element of Homk(A⊗(m+n−1),A) given by:

[f , g ] = f ◦ g − (−1)(m−1)(n−1)g ◦ f

where the circle product is given by:

(f ◦ g)(a1 ⊗ · · · ⊗ am+n−1) =

=
m∑
i=1

(−1)uf (a1⊗
(i−1)
· · · ⊗g(ai ⊗ · · · ⊗ ai+n−1)⊗

(m−i)
· · · ⊗am+n−1)

where u = (n − 1)(i − 1), for all a1, . . . , am+n−1 ∈ A. If m = 0 then
f ◦ g = 0 and if n = 0 then g(1) replaces g(ai ⊗ · · · ⊗ ai+n−1).
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Hochschild Cohomology

Properties of the Gerstenhaber bracket

Proposition

1 The Gerstenhaber bracket is graded anti-commutative.

2 The Gerstenhaber bracket satisfies the graded Jacobi identity.

3 The Gerstenhaber bracket on cochains forms a differential graded Lie
algebra.

Proposition

Let α ∈ HHm(A), β ∈ HHn(A), and γ ∈ HH l(A), then:

[α ^ β, γ] = [α, γ] ^ β + (−1)m(l−1)α ^ [β, γ].

Theorem

• (HH•(A),^, [−,−]) is a Gerstenhaber algebra.
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Relative Homological Algebra

Relative exact sequences

Definition

Let R be a ring, a sequence of R modules:

· · · −→ Ci
ti−→ Ci−1 −→ · · ·

is called exact if Im(ti ) = Ker(ti−1).

Definition

Let 1R ∈ S ⊆ R a subring. An exact sequence of R modules is called
(R,S) exact if Ker(ti ) is a direct summand of Ci as an S module.

This is equivalent to the sequence splitting, and to the existence of an S
homotopy (hence the sequence is exact as S modules).
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Relative Homological Algebra

Relative projective modules

Definition

An R module P is said to be (R, S) projective if, for every (R, S) exact

sequence M
g−→ N −→ 0 and every R homomorphism h : P −→ N, there

is an R homomorphism h′ : P −→ M with gh′ = h.

Relative: M
gR // N //

fS

ii 0

P

hR

OO

h′R

`` , Usual: M
gR // N // 0

P

hR

OO

h′R

`` .
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Relative Homological Algebra

Cup product on tensor product of complexes (I)

Consider P• an Ae projective resolution of A. It can be proven that the
total complex of P• ⊗A P• is also an Ae projective resolution of A.
Moreover, it can be proven that there exists a diagonal map
∆ : P• −→ Tot(P• ⊗A P•) lifting the identity map on A.

Definition

Let P• an Ae projective resolution of A, f ∈ HomAe (Pm,A), and
g ∈ HomAe (Pn,A). The cup product f ^ g is defined by
f ^ g = µ(f ⊗ g)∆.

This definition can be proven to be equivalent to the previous cup product.
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Relative Homological Algebra

Cup product on tensor product of complexes (and II)

To prove all these claims, we use:

1 the characterization of free modules over a ring,

2 the characterization of projective modules over a ring,

3 the Künneth Theorem,

4 the Comparison Theorem.

We want analogues of this results in relative homological algebra.
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Future outlook

Ongoing research

• Are there analogous results and characterizations in relative
homological algebra? Yes.

• Does relative Hochschild cohomology have a cup product? If it has
more than one, are they equivalent?

• Does it have a Gerstenhaber bracket? Does it induce a structure of
Gerstenhaber algebra?

Pablo S. Ocal (TAMU) Product in Hochschild Cohomology October 13, 2018 18



Future outlook

Something to take home

• Hochschild cohomology is intimately related with the Ext functor.

• Over a field this is well behaved and fairly well understood.

• There is a lot of progress to be made in natural generalizations.

Pablo S. Ocal (TAMU) Product in Hochschild Cohomology October 13, 2018 19



Thank you!

pso@math.tamu.edu
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