An algebraists view of the multinomial coefficients

Pablo S. Ocal
Texas A\&M University

February 16th, 2019

Outline

(1) Historical introduction
(2) Definitions and interpretations
(3) The multinomial coefficients are natural numbers
4) Conclusion

Where did they appear?

(1) Pingala wrote "Chandasastra" around the 3rd and 2nd centuries BCE.
(2) Halayudha wrote "Mrtasanjivani" around the 10th century.
(3) Bhaskaracharya wrote "Lilavati" in 1150 .
(9) Pascal wrote "Traite du triangle arithmetique" in 1653.
(5) Andreas von Ettingshausen introduced the modern notation in 1826.
serfoiebener Elemente obne sBieterbotungen für bie kte Slaffe jul fuden, wobei k nie gróger feyn fann, als n.

Da mir im gelgenten febr bäuf̄g Gelegenbeit baben wer: ben, don bem numerificen Zusbructe biefer MRenge Gebraud zu maben, fo wollen mir bafúr das zeiden $\binom{n}{k}$ wäblen, unb es mit ben sigorten n über k ausfipreden, wobei bie obere Sabl fett bie Anjabl ber combinirten Elemente, vie untere aber ben ケang ber Combinationsflaffe angitt.
gran bente fid alle Gombinationen ver n Elemente gur nádftoorbergebenten (k-1)ten stlaffe gebittet, unb jebe eins jelne ber biebei ©tatt finbenben $(k-1)$ (n omplerionen, mit jebem ber in ifr nidt vortommenben $n-(k-1)$ Elemente verbunten, fo ergeben fíd $\binom{n}{n}[n-(k-1)]$ ©omples rionen, welde fämmtlid ber kten §laffe angebören, unb unter welden jebe Denfbare ©ombination biefer slaffe genau kmal erfdeint. Sebe (Sombination ber liten Slaffe Eann námfid, indem man fid ftets ein anteres ibrer Elemente bavon getrennt votfellt, auf k verídietene $\mathbf{Z r t e n}^{\text {turd }} \mathfrak{\text { Bereinigung ciner }}$ $(k-1)$ fielligen Complerion mit einem einfaden Elemente erjeugt werben; welde aud immer biefe (k-1) fellige (Somplerion fey, fo mugte fie fid jebesimat unter obigen Sombination nen ber $(k-1)$ ten slaffe befinden, und indem fie mit allen in ibr nidt vortommenben $n-(k-1)$ Elementen $\mathfrak{B e r b i n b u n g e n ~}$ einging, auф jenes eingelne Efement mit aufnebmen. Es if bemnad bie Zu_{n} abl afler verfdiebenen Gombinationen von n Elementen bur kten Slaffe

$$
\binom{n}{k}=\binom{n}{k-i} \cdot \frac{n-(k-1)}{k} .
$$

ardein in ber erften Combinationstlaffe felegt jedes Element blof einjeln, daber ift $\binom{\mathrm{n}}{1}=n$, alfo für

$$
\begin{aligned}
& k=2,\binom{n}{3} \\
& k=\binom{n}{1} \cdot \frac{n-1}{2}=\frac{n(n-1)}{1 \cdot(2} \\
& k=3,\binom{n}{3} \\
& k=4,\binom{n}{2} \cdot \frac{n-2}{3}=\frac{n(n-1)(n-2)}{2 \cdot}=\binom{n}{3} \cdot \frac{n-3}{4}=\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot} 3 \cdot 4 \\
& \text { u.f.w. }
\end{aligned}
$$

unb allgemein

$$
\binom{n}{k}=\frac{n(n-1)(n-2)(n-3) \ldots[n-(k-1)]}{1 \cdot 2 \cdot}
$$

Beifpiel. Sür bie gewögnlide 及ablen= \&otterie ju go
Nummern if
Die $\mathrm{Zn}_{\mathrm{b}} \mathrm{abl}$ aller mägliden Kmben^{2}

$$
=\frac{90.89}{1.3}=4005 ;
$$

Die $\mathrm{Zn}_{\mathbf{z}} \mathrm{abl}$ ber \mathfrak{Z} ernen

$$
=\frac{90.89 .88}{1.3 .3}=117480 ;
$$

Die $\mathfrak{Z n f}_{\mathbf{z}}$ abt ber Quaternen

$$
=\frac{00.89 .88 .87}{1.2 \cdot 3 \cdot 4}=2555 ı 90 ;
$$

enblid bie $2 \mathrm{In}_{\mathrm{z}} \mathrm{abl}$ ber Quinternen

$$
=\frac{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}=43949268
$$

3 weiter \mathcal{F} alf. Es if bie $2\left(n_{\text {gabi }}\right.$ ber Combinationen von n Elementen zur kten slaffe mit uneingeidränten \#3ies berbolungen fu beftimmen, wobei k fo grok feyn Eann, als man will.

Man bexeidne bie verlangte $\mathcal{U}_{n \neq}$ abl einftweiten burd $\mathbf{C}_{\mathbf{k}}$, unb denfe fid alle (Gombinationen mit \mathfrak{W} Biederbolungen ter ger gebenen n (Elemente gur nädfoorbergebenben ($k-1$)ten slaffe gebitbet, fo wirb Die $\mathrm{Z}_{\mathrm{n}} \mathrm{abl}$ Derfelben, ter angenommenen $B_{e r}$ geidnung gemäß, burd $\mathrm{C}_{\mathrm{k}-1}$ vorgeftella.' Nan verbinde jebe

Combinatorial definitions

Definition

The binomial coefficient n over k, denoted $\binom{n}{k}$, is the number of subsets of k distinct elements that can be obtained from a set of n elements.

Definition

The binomial coefficient $n+1$ over k, denoted $\binom{n+1}{k}$, is the number of strings consisting of k ones and n zeros such that no two ones are adjacent.

Clearly we have $\binom{n}{k} \in \mathbb{N}$.

Factorial definition

Definition

The binomial coefficient n over k, for $k \leq n$, is:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Definition

The multinomial coefficient, for $n=k_{1}+\cdots+k_{m}$, is:

$$
\binom{n}{k_{1}, \cdots, k_{m}}=\frac{n!}{k_{1}!\cdots k_{m}!} .
$$

The Binomial and Multinomial Theorem

A classic result immediately proves $\binom{n}{k} \in \mathbb{N}$.

Theorem (Binomial Theorem)

Given $n \in \mathbb{N}$ we have:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-1} y^{k}
$$

And a generalization immediately proves $\binom{n}{k_{1}, \ldots, k_{m}} \in \mathbb{N}$.

Theorem (Multinomial Theorem)

Given $n, m \in \mathbb{N}$ we have:

$$
\left(x_{1}+\cdots+x_{m}\right)^{n}=\sum_{k_{1}+\cdots+k_{m}}\binom{n}{k_{1}, \cdots, k_{m}} x_{1}^{k_{1}} \cdots x_{m}^{k_{m}} .
$$

Direct proofs (I)

A combinatorial approach:

Proposition

Given $n \in \mathbb{N}$ we have:

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Proof.

We have $(1+x)$ multiplied n times. For any $k \leq n$, to obtain x^{k} we pick k factors with x (out of the n possible), and for the remaining $n-k$ we pick 1.

Hence $\binom{n}{k} \in \mathbb{N}$.

Direct proofs (II)

An iterative approach:

Proposition (Pascal's rule)

Given $n \in \mathbb{N}$ we have that for $0<k<n$:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Proof.

Left as exercise.
And since $\binom{n}{0}=1=\binom{n}{n}$, we have $\binom{n}{k} \in \mathbb{N}$.

Pascal's rule proof

Proof.

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{n!(n+1-k)}{k!(n+1-k)!}+\frac{n!k}{k!(n+1-k)!} \\
& =\frac{n!(n+1-k+k)}{k!(n+1-k)!}=\frac{n!(n+1)}{k!(n+1-k)!} \\
& =\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k} .
\end{aligned}
$$

Direct proofs (and III)

Theorem

Given $n, k_{1}, \ldots, k_{m} \in \mathbb{N}$ with $n=k_{1}+\cdots+k_{m}$ we have that $\binom{n}{k_{1}, \ldots, k_{m}} \in \mathbb{N}$.

Proof.

Direct proofs (and III)

Theorem

Given $n, k_{1}, \ldots, k_{m} \in \mathbb{N}$ with $n=k_{1}+\cdots+k_{m}$ we have that $\binom{n}{k_{1}, \ldots, k_{m}} \in \mathbb{N}$.

Proof.

We have a natural inclusion $S_{k_{1}} \times \cdots \times S_{k_{m}} \subset S_{n}$. Then by Lagrange's Theorem $k_{1}!\cdots k_{m}!=\left|S_{k_{1}} \times \cdots \times S_{k_{m}}\right|$ divides $\left|S_{n}\right|=n!$.

Tiny prerequisites

For two sets X and Y, we have $|X \times Y|=|X||Y|$. Moreover, $\left|S_{n}\right|=n!$. The natural inclusion:

$$
\begin{array}{rlc}
S_{k_{1}} \times \cdots \times S_{k_{m}} & \longrightarrow & S_{n} \\
\left(\sigma_{1}, \ldots, \sigma_{m}\right) & \longmapsto & \sigma_{1} \ldots \sigma_{m}
\end{array}
$$

where σ_{i} acts on the components ranging from $k_{1}+\cdots+k_{i-1}+1$ to $k_{1}+\cdots+k_{i}, i=1, \ldots, m$, is a group homomorphism.

Theorem (Lagrange's Theorem)

Given a finite group G and any subgroup H, then $|H|$ divides $|G|$.

Conclusion

Non trivial results can be used to prove concepts in a beautiful way.

Thank you!

[^0]
[^0]:

