An Approach to Determinants

Pablo S. Ocal
Texas A\&M University

September 20, 2018

Outline

(1) Motivation

(2) Prerequisites
(3) Determinants
4. Existence and Uniqueness
(5) Other possible outlooks

Why do we care?

- Most of the times determinants are given as a formula without any kind of explanation, for example as an expansion by rows or columns.
- That is wrong, basic Mathematics should be understood as deep as possible to allow a solid base over which we can build knowledge.
- Linear Algebra is one of the most basic and powerful tools a mathematician has. Understanding determinants from first principles enable us to see how elementary results allow deep understanding of complex concepts.

Remarks

- We will be working over \mathbb{R}, but most (if not all) of the following can be generalized to any commutative ring R.
- Let S_{n} be the group of permutations of n elements. Then $A_{n}=\left\{\sigma \in S_{n} \mid \operatorname{sgn}(\sigma)=1\right\}$ and for any transposition $\tau \in S_{n}$ we have $S_{n} \backslash A_{n}=\left\{\sigma \tau \mid \sigma \in A_{n}\right\}$.

Notation

- Given $A \in M_{n}(\mathbb{R})$ a matrix, we will denote its columns by C_{1}, \ldots, C_{n}.
- The elementary matrices are:
- $D_{n}(i, \lambda)$, the matrix obtained by multiplying the i th row of 1_{n} by $\lambda \in \mathbb{R} \backslash\{0\}$,
- $P_{n}(i, j)$, the matrix obtained by exchanging the i th and j th rows $(i \neq j)$ of 1_{n},
- $E_{n}(i, j, \mu)$, the matrix obtained by adding to the i th row of 1_{n} the j th row $(i \neq j)$ of 1_{n} multiplied by $\mu \in \mathbb{R}$.

Results

The price we pay for working with first principles is a heavy use of the structure of matrices.

Theorem (PAQ-reduction)

Given any $A \in M_{m \times n}(\mathbb{R})$, there exist $P \in M_{m}(\mathbb{R})$ and $Q \in M_{n}(\mathbb{R})$ invertible (in fact product of elementary matrices) such that:

$$
P A Q=\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] \text {, and } r \text { does not depend on } P \text { nor } Q \text {. }
$$

Corollary

A matrix $A \in M_{n}(\mathbb{R})$ is invertible if and only if it is a product of elementary matrices.

Corollary

A matrix $A \in M_{n}(\mathbb{R})$ is invertible if and only if its rank is n.

First principles

Definition

A determinant is a map det : $M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ satisfying:
(1) it is linear with respect to each column,
(2) is alternating,
(3) $\operatorname{det}\left(1_{n}\right)=1$.

With this definition we need to show that such a map exists, and hopefully that it is unique.

In matrix notation

That is, given $C_{1}, \ldots, C_{n}, C_{j}^{\prime} \in M_{n \times 1}(\mathbb{R}), \alpha \in \mathbb{R}$ we want by linearity: $1 \operatorname{det}\left(C_{1}, \ldots, C_{j}+C_{j}^{\prime}, \ldots, C_{n}\right)=$ $\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{n}\right)+\operatorname{det}\left(C_{1}, \ldots, C_{j}^{\prime}, \ldots, C_{n}\right)$,
$2 \operatorname{det}\left(C_{1}, \ldots, \alpha C_{j}, \ldots, C_{n}\right)=\alpha \operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{n}\right)$,
if $C_{i}=C_{j}$ for some $1 \leq i<j \leq n$ then for alternating:
$3 \operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)=0$,
and always:
$4 \operatorname{det}\left(1_{n}\right)=1$,

First properties (I)

Proposition

Let det $: M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Let $C_{1}, \ldots, C_{n} \in M_{n \times 1}(\mathbb{R})$, then:

$$
\operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)=-\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{i}, \ldots, C_{n}\right)
$$

that is, exchanging two columns changes the sign of the determinant.
That is, determinants should be antisymmetric. In fact, we prove that every alternating multilinear map is antisymmetric.

First properties (II)

Proof.

We have:

$$
\begin{aligned}
0 & =\operatorname{det}\left(C_{1}, \ldots, C_{i}+C_{j}, \ldots, C_{j}+C_{i}, \ldots, C_{n}\right) \\
& =\operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)+\operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{i}, \ldots, C_{n}\right) \\
& +\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{j}, \ldots, C_{n}\right)+\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{i}, \ldots, C_{n}\right) \\
& =\operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)+\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{i}, \ldots, C_{n}\right)
\end{aligned}
$$

by applying alternating, linearity and alternating again. Hence:

$$
-\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{i}, \ldots, C_{n}\right)=\operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)
$$

First properties (III)

Proposition

Let det : $M_{2}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Then:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c .
$$

So in particular at most one determinant exists in dimension two, and it must have this form.

First properties (and IV)

Proof.

We have:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & =a \operatorname{det}\left[\begin{array}{ll}
1 & b \\
0 & d
\end{array}\right]+c \operatorname{det}\left[\begin{array}{ll}
0 & b \\
1 & d
\end{array}\right] \\
& =a\left(b \operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+d \operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& +c\left(b \operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d \operatorname{det}\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\right)=a d-c b
\end{aligned}
$$

where we have used linearity on the first column, then on the second column, and finally alternating, antisymmetric and $\operatorname{det}\left(1_{2}\right)=1$.

Determinant of elementary matrices (I)

Proposition

Let det: $M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Then:
(1) $\operatorname{det}\left(D_{n}(i, \lambda)\right)=\lambda$,
(2) $\operatorname{det}\left(P_{n}(i, j)\right)=-1$,
(3) $\operatorname{det}\left(E_{n}(i, j, \mu)\right)=1$.

Determinant of elementary matrices (and II)

Proof.

(1) $\operatorname{det}\left(D_{n}(i, \lambda)\right)=\lambda \operatorname{det}\left(1_{n}\right)=\lambda$ by multilinearity,
(2) $\operatorname{det}\left(P_{n}(i, j)\right)=-\operatorname{det}\left(1_{n}\right)=-1$ by antisymmetric,
(3) $\operatorname{det}\left(E_{n}(i, j, \mu)\right)=\operatorname{det}\left(1_{n}\right)+\mu \operatorname{det}\left[\begin{array}{lllllll}1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & 1 & & \\ & & & \ddots & & & \\ & & 0 & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 1\end{array}\right]=1$ by linearity and alternating.

Determinant of a product of matrices (I)

Proposition

Let det : $M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Then for all $A, B \in M_{n}(\mathbb{R})$ we have:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

In other words, a determinant is multiplicative.

Determinant of a product of matrices (II)

Proof.

Let C_{1}, \ldots, C_{n} be the columns of A. We first check the claim for B an elementary matrix:
(1) $\operatorname{det}\left(A D_{n}(i, \lambda)\right)=\operatorname{det}\left(C_{1}, \ldots, \lambda C_{i}, \ldots, C_{n}\right)=\lambda \operatorname{det}(A)=$ $\operatorname{det}(A) \operatorname{det}\left(D_{n}(i, \lambda)\right)$,
(2) $\operatorname{det}\left(A P_{n}(i, j)\right)=\operatorname{det}\left(C_{1}, \ldots, C_{j}, \ldots, C_{i}, \ldots, C_{n}\right)=-\operatorname{det}(A)=$ $\operatorname{det}(A) \operatorname{det}\left(P_{n}(i, j)\right)$,
(3) $\operatorname{det}\left(A E_{n}(i, j, \mu)\right)=\operatorname{det}\left(C_{1}, \ldots, C_{j}+\mu C_{i}, \ldots, C_{n}\right)=\operatorname{det}(A)+$ $\mu \operatorname{det}\left(C_{1}, \ldots, C_{i}, \ldots, C_{i}, \ldots, C_{n}\right)=\operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}\left(E_{n}(i, j, \mu)\right)$.

Determinant of a product of matrices (III)

Proof.

If $B=E_{1} \ldots E_{m}$ is a product of elementary matrices, then by induction on m (the case $m=1$ is what we just proved):

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(\left(A E_{1} \cdots E_{m-1}\right) E_{m}\right) \\
& =\operatorname{det}\left(A E_{1} \ldots E_{m-1}\right) \operatorname{det}\left(E_{m}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(E_{1} \ldots E_{m-1}\right) \operatorname{det}\left(E_{m}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(E_{1} \ldots E_{m}\right)=\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

using that E_{m} is an elementary matrix and induction hypothesis. This also yields that $\operatorname{det}(B)=\operatorname{det}\left(E_{1}\right) \ldots \operatorname{det}\left(E_{n}\right) \neq 0$.

Determinant of a product of matrices (and IV)

Proof.

If B is not a product of elementary matrices, then it is not invertible, so it has rank r less than n. By the $P A Q$-reduction of B, we know that there exists $Q \in M_{n}(\mathbb{R})$ product of elementary matrices (so $\left.\operatorname{det}(Q) \neq 0\right)$ such that $B Q=\left(C_{1}^{\prime}, \ldots, C_{r}^{\prime}, 0, \ldots, 0\right)$. In particular $\operatorname{det}(B Q)=0$ since at least one column is all zeroes. By the previous case $\operatorname{det}(B Q)=\operatorname{det}(B) \operatorname{det}(Q)$, and thus $\operatorname{det}(B)=0$.
Consider now $A B Q=\left(C_{1}^{\prime \prime}, \ldots, C_{r}^{\prime \prime}, 0, \ldots, 0\right)$, we analogously have
$0=\operatorname{det}(A B Q)=\operatorname{det}(A B) \operatorname{det}(Q)$ and thus $\operatorname{det}(A B)=0=\operatorname{det}(A) \operatorname{det}(B)$.

Powerful conclusions (I)

In fact in the above reasoning we have proven:

Theorem

Let det : $M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Then $A \in M_{n}(\mathbb{R})$ is invertible if and only if $\operatorname{det}(A) \neq 0$.

Moreover, given $A, B \in M_{n}(\mathbb{R})$ with $A B=1_{n}$ then A and B are invertible since $\operatorname{det}(A) \operatorname{det}(B)=1$, and thus $B^{-1}=A$.

Powerful conclusions (II)

Theorem

Let det : $M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a determinant. Then for all $A \in M_{n}(\mathbb{R})$ we have $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.

That is, the properties of the determinant established for the rows of a matrix also hold for the columns of that matrix.

Powerful conclusions (and III)

Proof.

If A is invertible, then it can be written as the product of elementary matrices $A=E_{1} \ldots E_{m}$. Since $A^{T}=E_{m}^{T} \ldots E_{1}^{T}$, it is enough to prove that $\operatorname{det}\left(E_{i}\right)=\operatorname{det}\left(E_{i}^{T}\right)$. That is true since $D_{n}(i \lambda)^{T}=D_{n}(i, \lambda)$, $P_{n}(i, j)^{T}=P_{n}(i, j), E_{n}(i, j, \mu)^{T}=E_{n}(j, i, \mu)$ and $\operatorname{det}\left(E_{n}(i, j, \mu)^{T}\right)=1=\operatorname{det}\left(E_{n}(j, i, \mu)\right)$.
If A is not invertible then A^{T} is not invertible and $\operatorname{det}\left(A^{T}\right)=0=\operatorname{det}(A)$.

Uniqueness

Theorem

Let det, $\operatorname{det}^{\prime}: M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ be two determinants. Then $\operatorname{det}(A)=\operatorname{det}^{\prime}(A)$ for all $A \in M_{n}(\mathbb{R})$, so $\operatorname{det}=\operatorname{det}^{\prime}$.

So if it exists, the determinant is unique.

Proof.

We know that both det and $\operatorname{det}^{\prime}$ take the same values over the elementary matrices, and hence over all the invertible matrices. Moreover, they are both zero over the non invertible matrices. They are thus equal.

Existence (I)

Theorem

Given any $A=\left(a_{i j}\right) \in M_{n}(\mathbb{R})$, define det, $\operatorname{det}^{\prime}: M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ as:

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(n) n}
$$

Then det is a determinant.
So a determinant exists.

Existence (II)

Proof.

We just need to check the properties of the definition. Consider columns:

$$
C_{k}=\left[\begin{array}{lll}
a_{1 k} & \cdots & a_{n k}
\end{array}\right]^{T} \text { for } 1 \leq k \leq n \text { and } C_{j}^{\prime}=\left[\begin{array}{lll}
a_{1 j}^{\prime} & \cdots & a_{n j}^{\prime}
\end{array}\right]^{T},
$$

then:

$$
\begin{aligned}
& \operatorname{det}\left(C_{i}, \ldots, C_{j}+C_{j}^{\prime}, \ldots, C_{n}\right) \\
= & \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots\left(a_{\sigma(j) j}+a_{\sigma(j) j}^{\prime}\right) \cdots a_{\sigma(n) n} \\
= & \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(j) j} \cdots a_{\sigma(n) n} \\
+ & \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(j) j}^{\prime} \cdots a_{\sigma(n) n} \\
= & \operatorname{det}\left(C_{i}, \ldots, C_{j}, \ldots, C_{n}\right)+\operatorname{det}\left(C_{i}, \ldots, C_{j}^{\prime}, \ldots, C_{n}\right) .
\end{aligned}
$$

Existence (III)

Proof.

For any $\alpha \in \mathbb{R}$ we have:

$$
\begin{aligned}
& \operatorname{det}\left(C_{i}, \ldots, \alpha C_{j}, \ldots, C_{n}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots \alpha a_{\sigma(j) j} \cdots a_{\sigma(n) n} \\
= & \alpha \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(j) j} \cdots a_{\sigma(n) n}=\alpha \operatorname{det}\left(C_{i}, \ldots, C_{j}, \ldots, C_{n}\right) .
\end{aligned}
$$

Let $C_{i}=C_{j}$ for $1 \leq i<j \leq n$, so in particular $a_{\sigma(i) i}=a_{\sigma(i) j}$ and $a_{\sigma(j) i}=a_{\sigma(j) j}$ for all $\sigma \in S_{n}$, and define $\tau=(i, j) \in S_{n}$. Then:

Existence (IV)

Proof.

$$
\begin{aligned}
& \operatorname{det}\left(C_{i}, \ldots, C_{i}, \ldots, C_{j}, \ldots, C_{n}\right) \\
= & \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(i) i} \cdots a_{\sigma(j) j} \cdots a_{\sigma(n) n} \\
= & \sum_{\sigma \in A_{n}} a_{\sigma(1) 1} \cdots a_{\sigma(i) i} \cdots a_{\sigma(j) j} \cdots a_{\sigma(n) n} \\
- & \sum_{\sigma \in A_{n}} a_{\sigma \tau(1) 1} \cdots a_{\sigma \tau(i) i} \cdots a_{\sigma \tau(j) j} \cdots a_{\sigma \tau(n) n} \\
= & \sum_{\sigma \in A_{n}} a_{\sigma(1) 1} \cdots a_{\sigma(i) i} \cdots a_{\sigma(j) j} \cdots a_{\sigma(n) n} \\
- & \sum_{\sigma \in A_{n}} a_{\sigma(1) 1} \cdots a_{\sigma(j) i} \cdots a_{\sigma(i) j} \cdots a_{\sigma(n) n}=0 .
\end{aligned}
$$

Existence (and V)

Proof.

Finally, we have $1_{n}=\left(\delta_{i j}\right)$ where $\delta_{i j}$ is the Kronecker delta. Thus:

$$
\operatorname{det}\left(1_{n}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \delta_{\sigma(1) 1} \cdots \delta_{\sigma(n) n}=\delta_{11} \cdots \delta_{n n}=1
$$

Hence det is indeed a determinant.

The determinant as a natural transformation

Consider AbRing the category of commutative rings, Grp the category of groups.

For each $n \in \mathbb{N}$, the general linear group $G L_{n}(-)$ is a functor from AbRing to Grp. Moreover the operation $(-)^{\times}$sending an abelian ring to its group of units is also a functor from AbRing to Grp.

The determinant det is a natural transformation det : $G L_{n}(-) \longrightarrow(-)^{\times}$.

More elaborated determinants

- Given R a commutative ring with unit, we can define a determinant for an endomorphism T of a free R module M of rank n :

$$
T\left(m_{1}\right) \wedge \cdots \wedge T\left(m_{n}\right)=\operatorname{det}(T) \cdot\left(m_{1} \wedge \cdots \wedge m_{n}\right)
$$

- There are determinants of complexes and categories of determinants.

Something to take home

- Basics concepts in Mathematics are extremely powerful. Never underestimate how useful they can be, even to tackle problems that seem out of their reach.
- Linear Algebra appears absolutely everywhere, and a deep understanding of it will provide insight into more complex concepts.

pso@math.tamu.edu

