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Why do we care?

e Most of the times determinants are given as a formula without any
kind of explanation, for example as an expansion by rows or columns.

e That is wrong, basic Mathematics should be understood as deep as
possible to allow a solid base over which we can build knowledge.

e Linear Algebra is one of the most basic and powerful tools a
mathematician has. Understanding determinants from first principles
enable us to see how elementary results allow deep understanding of
complex concepts.
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Remarks

e We will be working over R, but most (if not all) of the following can
be generalized to any commutative ring R.

o Let S, be the group of permutations of n elements. Then

An = {0 € Sylsgn(o) = 1} and for any transposition 7 € S, we have
Sn\ Ap ={oT|o € An}.
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Notation

e Given A € M,(R) a matrix, we will denote its columns by C,..., C,.

e The elementary matrices are:

D, (i, \), the matrix obtained by multiplying the ith row of 1, by
A e R\ {0},

P.(i,J), the matrix obtained by exchanging the ith and jth rows
(i #J) of 1,,

En(i,j, 1), the matrix obtained by adding to the ith row of 1, the jth
row (i # j) of 1, multiplied by p € R.
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Prerequisites

Results

The price we pay for working with first principles is a heavy use of the
structure of matrices.

Theorem (PAQ-reduction)

Given any A € Mp,«n(R), there exist P € M,(R) and Q € M,(R)
invertible (in fact product of elementary matrices) such that:

I, 0

PAQ:[O 0

] , and r does not depend on P nor Q.

Corollary

A matrix A € Mp(R) is invertible if and only if it is a product of
elementary matrices.

Corollary

A matrix A € M,(R) is invertible if and only if its rank is n.
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Determinants

First principles

A determinant is a map det : M,(R) — R satisfying:

© it is linear with respect to each column,
@ is alternating,
Q det(1,) =1.

With this definition we need to show that such a map exists, and hopefully
that it is unique.
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Determinants

In matrix notation

That is, given Cy,..., Cp, CJf € M,x1(R), o € R we want by linearity:

1 det(Cl,...,Cj—i—CJf,...,Cn):
det(Cl,...,Cj,...,C,,)-i—det(Cl,...,CJf,...,C,,),

2 det(Cy,...,aG,...,G) =adet(Cy, ..., C,...,G),

if C; = C; for some 1 < i < j < n then for alternating:

3 det(Cl,...,C,- ...,Cj,...,Cn)ZO,

and always:

4 det(1l,) =1,
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First properties (1)

Let det : M,(R) — R be a determinant. Let G, ..., C, € Mpx1(R),
then:

det(Cl,...,C,',...,Cj,...,Cn):—det(Cl,...,CJ',...,C,',...,C,,)

that is, exchanging two columns changes the sign of the determinant.

That is, determinants should be antisymmetric. In fact, we prove that
every alternating multilinear map is antisymmetric.
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Determinants

First properties (I1)

Proof.
We have:

0 = det(G,...,.G+GC,...,G+GC,...,GC)
= det(C,...,C..., Gy, Gy) +det(Cr, ..., Ciyo o, Giyeoty Cp)
+ det(Cy..., Gy Gy ooy Gp) +det(Cry. .., Gy ooy Ciy oo, Gy)
= det(Ci,....G,..., G, Gy) +det(Crye s Giyeo oy Giyeory Ca)

by applying alternating, linearity and alternating again. Hence:

—det(Cy,..., G, Cio oy Co) =det(Cry.. ., Gy oy Gy, Cr).
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First properties (1)

Proposition
Let det : Mr(R) — R be a determinant. Then:

a b
det [c d]—ad—bc.

So in particular at most one determinant exists in dimension two, and it
must have this form.
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Determinants

First properties (and V)

We have:
a b 1 b 0 b
det [c d] = adet [0 d] + cdet [1 d]
11 10
= a <bdet [0 0] + d det [0 J)

0 1 0 0
+ c(bdet[1 0}+ddet{l 1]>—ad—cb

where we have used linearity on the first column, then on the second
column, and finally alternating, antisymmetric and det(1;) = 1. O
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Determinants

Determinant of elementary matrices (1)

Let det : M,(R) — R be a determinant. Then:
Q det(Dy(i,N)) = A,
Q det(Py(i,))) = -1,
@ det(En(i,j,n)) = 1.
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Determinants

Determinant of elementary matrices (and Il)

Q det(Dn(i, N)) = Adet(1,) = A by multilinearity,
@ det(Pn(i,j)) = —det(1,) = —1 by antisymmetric,

1

o det(En(i,j,/j,)) = det(]-n) + Mdet =1

by linearity and alternating.

Pablo S. Ocal (TAMU) An Approach to Determinants September 20, 2018 14



Determinants

Determinant of a product of matrices (1)

Proposition

Let det : M,(R) — R be a determinant. Then for all A, B € M,(R) we
have:

det(AB) = det(A) det(B).

In other words, a determinant is multiplicative.
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Determinant of a product of matrices (Il)

Let Ci,..., C, be the columns of A. We first check the claim for B an
elementary matrix:

@ det(AD,(i,\)) = det(Ci, ..., ACi,-.., ) = Adet(A) =
det(A) det(Dn(i, ),

@ det(AP,(i,j)) = det(C1, ..., Cjr..., Cir..., Cp) = — det(A) =
det(A) det(Pn(i,J)),

Q det(AEn(i,j,p)) =det(Cy, ..., C+ uG, ..., Cy) = det(A) +
pdet(Cr, ..., Giy ooy Giyo. o, Co) = det(A) = det(A) det(En(i, j, 11))-
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Determinants

Determinant of a product of matrices (I11)

Proof

If B=E;...E, is a product of elementary matrices, then by induction on
m (the case m = 1 is what we just proved):

det(AB) = det((AE1 - Em—1)Em)
= det(AE; ... Em_1)det(Em)
= det(A)det(E; ... Em_1)det(En)
= det(A)det(E; ... En) = det(A)det(B)

using that E,, is an elementary matrix and induction hypothesis. This also
yields that det(B) = det(E;) . ..det(E,) # 0.
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Determinant of a product of matrices (and 1V)

If B is not a product of elementary matrices, then it is not invertible, so it
has rank r less than n. By the PAQ-reduction of B, we know that there
exists Q@ € M,(R) product of elementary matrices (so det(Q) # 0) such
that BQ = (Cy,..., C/,0,...,0). In particular det(BQ) = 0 since at least
one column is all zeroes. By the previous case det(BQ) = det(B) det(Q),
and thus det(B) = 0.

Consider now ABQ = (C/,...,C/,0,...,0), we analogously have

0 = det(ABQ) = det(AB) det(Q) and thus

det(AB) = 0 = det(A) det(B). O
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Determinants

Powerful conclusions (1)

In fact in the above reasoning we have proven:

Theorem
Let det : M,(R) — R be a determinant. Then A € M,(R) is invertible if
and only if det(A) # 0.

Moreover, given A, B € M,(R) with AB =1, then A and B are invertible
since det(A)det(B) = 1, and thus B~! = A.
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Determinants

Powerful conclusions (I1)

Theorem

Let det : M,(R) — R be a determinant. Then for all A € M,(R) we have
det(A) = det(AT).

That is, the properties of the determinant established for the rows of a
matrix also hold for the columns of that matrix.
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Powerful conclusions (and IlI)

If Ais invertible, then it can be written as the product of elementary
matrices A= E; ... E,. Since AT = EJ ... E], it is enough to prove that
det(E;) = det(E;"). That is true since D,(i\)T = D,(i, \),

Po(i,j)T = Pa(i. ), En(isj, 1) ™ = En(j, i, ) and

det(E,(i,j, ;) 7) =1 = det(E,(j, i, 1))

If Ais not invertible then AT is not invertible and

det(AT) = 0 = det(A). O
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Existence and Uniqueness

Uniqueness

Let det,det’ : M,(R) — R be two determinants. Then det(A) = det'(A)
for all A € My(R), so det = det’.

So if it exists, the determinant is unique.

Proof.

We know that both det and det’ take the same values over the elementary
matrices, and hence over all the invertible matrices. Moreover, they are
both zero over the non invertible matrices. They are thus equal. O
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Existence and Uniqueness

Existence (1)

Given any A = (aj) € M,(R), define det,det’ : M,(R) — R as:

det(A) = Z Sgn(a)aa(l)l ***dg(n)n-

g€S,

Then det is a determinant.

So a determinant exists.
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Existence and Uniqueness

Existence (I1)
Proof.

We just need to check the properties of the definition. Consider columns:

Ck:[alk a,,k]Tforlgkgnand Cj:[a’lj a’j]T,
then:
det(Cf7...,C:i+Cl{7...,Cn)

/

= > sen(0)agy - (a0 + (i) o(an

o€Sy
= > 580(0) a1 Ap(i)j - a(n)n
o€ES,
+ Z Sgn(a)aa(l)l T a:;(j)j ***dg(n)n
g€S,
= det(C,',...,Cj,...,Cn)—l—det(C;,...,le,...,Cn).
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Existence and Uniqueness

Existence (111)

For any a € R we have:

det(C,-, 000 ,Oij, 5000 Cn) = Z sgn(a)aa(l)l ©Qg(j)jt Ag(n)n
o€ES,
= « Z sgn(a)aa(l)l © 1 3g(j)j " do(n)n = adet(C;, aoog C:,', noag C,,).
o€Sy

Let G; = G for 1 <7 <j < n, soin particular a,(;); = a,(;); and
as(j)i = 3o(j)j for all o € Sy, and define 7 = (i,j) € S,. Then:
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Existence (IV)

det(C,-,...,C,- ...,Cj,...,Cn)

= D 580(0)ap( B (@i Al Ao
O'GSn

= D A A ()i Ao
ogEAn

- Z Aor(1)1 """ or(i)i * " " 9or(j)j " Qor(n)n
o€A,

— Z ao’(l)l . e ao_(l.),. e 3a(j)j . ao_(n)n
oEA,

= Z (1)1 Ao (j)i " Ao(i)j " Ao (mn = O-
ogEA
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Existence (and V)

Finally, we have 1, = (0;;) where §;; is the Kronecker delta. Thus:

det Z sgn --'(50(,,),, =011 0pn = 1.
oES,

Hence det is indeed a determinant.
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Other possible outlooks

The determinant as a natural transformation

Consider AbRing the category of commutative rings, Grp the category of
groups.

For each n € N, the general linear group GL,(—) is a functor from
AbRing to Grp. Moreover the operation (—)* sending an abelian ring to
its group of units is also a functor from AbRing to Grp.

The determinant det is a natural transformation det : GL,(—) — (—)*.
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Other possible outlooks

More elaborated determinants

e Given R a commutative ring with unit, we can define a determinant
for an endomorphism T of a free R module M of rank n:

T(mi)A---ANT(mp)=det(T)-(mg A--- A mp).

e There are determinants of complexes and categories of determinants.
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Other possible outlooks

Something to take home

e Basics concepts in Mathematics are extremely powerful. Never
underestimate how useful they can be, even to tackle problems that
seem out of their reach.

o Linear Algebra appears absolutely everywhere, and a deep
understanding of it will provide insight into more complex concepts.
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