
THE ZIEGLER SPECTRUM OF A DISCRETE VALUATION RING

PABLO S. OCAL

Abstract. This note gives a description of the Ziegler spectrum of a discrete valuation ring, em-
phasizing the interconnection between logic and representation theory.

1. Preliminaries

Definition 1.1. A discrete valuation ring, denoted D, is a principal ideal domain with exactly one
non-zero maximal ideal, denoted Dπ for a fixed π ∈ D.

Equivalently, D is a local ring, a principal ideal domain, and not a field. Equivalently, D is
a principal ideal domain with a unique non-zero prime ideal. In all cases, D is commutative by
definition. Unless explicitly stated otherwise, all modules in this note will be over D.

Example 1.2. The following are modules.

(1) The field of fractions Q of D.
(2) The ideals Dπn for n ∈ N.
(3) The quotients D/Dπn for n ∈ N.
(4) The ring of power series DJxK.

The ideals of D form a descending filtration of D:

(1.3) D = Dπ0 ⊇ Dπ ⊇ Dπ2 ⊇ · · · ⊇ Dπn ⊇ · · · ⊇ 0,

which can be assembled into the following sequence of injections

(1.4) 0 D
Dπ

D
Dπ2 · · · D

Dπn · · · lim−→n∈N
D

Dπn

and the following sequence of surjections

(1.5) lim←−n∈N
D

Dπn · · · D
Dπn · · · D

Dπ2
D
Dπ 0.

Definition 1.6. The Prüfer module of D, denoted D[π∞], is the direct limit of D/Dπn for n ∈ N.

(1.7) D[π∞] := lim−→
n∈N

D

Dπn
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Definition 1.8. The π-completion of D, denoted D̂, is the inverse limit of D/Dπn for n ∈ N.

(1.9) D̂ := lim←−
n∈N

D

Dπn

Observe that the Prüfer module of D fits into the following short exact sequence

(1.10) 0 D Q D[π∞] 0,

so in particular D[π∞] = coker(D ↪→ Q) ∼= Q/D ≡ {u/πn | u /∈ Dπ and n ∈ N>0}. Similarly, the
π-completion of D fits into the following short exact sequence

(1.11) 0 DJxK(x− π) DJxK D̂ 0,

so in particular D̂ = coker(DJxK(x−π) ↪→ DJxK) ∼= DJxK/DJxK(x−π), the formal power series that

are divisible by (x− π). As we will justify below, D[π∞] is the injective hull of D/Dπ and D̂ is the
pure-injective hull of D.

2. The points of Zg(D)

Definition 2.1. The set of points of the Ziegler spectrum of D, denoted Zg(D), is the set of
isomorphism classes of indecomposable pure-injective modules over D.

To determine the Ziegler spectrum of D, we recall some definitions and results concerning purity.

Definition 2.2. Let f : M → N be an injective map of modules. We say that f is pure when
for every finite system of equations with coefficients in D and constant terms from M , if there is a
solution in N then there is a solution in M .

Denote a system of equations with coefficients in D, variables x⃗ = [x1, . . . , xk], and constant term

l⃗ ∈ Lk by θ(x⃗, l⃗). Denote the set of solutions {m⃗ ∈ Mk | θ(m⃗, l⃗)} by θ(M, l⃗). An injective map
f :M → N is pure when given θ(x⃗, m⃗) such that θ(N, f(m⃗)) ̸= ∅ then θ(M, m⃗) ̸= ∅, where f(m⃗) is
understood to be the application of f to each entry of m⃗.

Proposition 2.3. Let f :M → N be an injective map of modules. The following are equivalent.

(1) f :M → N is pure.
(2) f ⊗D idL : M ⊗D L → N ⊗D L is an injective map of Abelian groups for all L finitely

presented module.

Example 2.4. There is a natural pure embedding D → D̂. To see this, note first that taking the
inverse limit of the inverse system of short exact sequences

(2.5) { 0 Dπn D D/Dπn 0 }n∈N
gives the exact sequence

(2.6)

0 lim←−n∈NDπ
n lim←−n∈ND lim←−n∈ND/Dπ

n

0 D D̂

∼= ∼= =

because the inverse limit is a left exact functor. This natural map D → D̂ is thus injective, and it

coincides with the natural map D → D̂⊗DD. A more elaborate argument shows that L→ D̂⊗D L
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is injective for any finitely presented module L. Since D ⊗D L is a finitely presented module when
L is a finitely presented module, then

(2.7) D ⊗D L D̂ ⊗D D ⊗D L ∼= D̂ ⊗D L

is injective. Thus D → D̂ is a pure embedding by Proposition 2.3.

Definition 2.8. Let P be a module, let f : M → N be any pure embedding of modules, and let
g : M → P be any map of modules. We say that M is pure-injective when there exists a map
h : N → P such that hf = g.

(2.9)

0 M N

P

f

g
h

Example 2.10.

(1) The module D[π∞] is pure-injective because it is injective. In fact, it is the injective hull of
D/Dπ because

(2.11) D[π∞] = lim−→
n∈N

D

Dπn
=
Q

D
=
Dπ

D
= InjHull

(
D

Dπ

)
.

(2) The module D̂ is pure-injective. We will use the following facts. First, Artinian modules are
linearly compact. Second, the inverse limit of linearly compact modules is linearly compact.
Third, over a commutative ring being linearly compact is equivalent to being algebraically

compact. Fourth, being algebraically compact is equivalent to being pure-injective. Now, D̂
is algebraically compact because it is the inverse limit of the Artinian modules D/Dπn for

n ∈ N>0. Thus D̂ is pure-injective. In fact, it is the pure-injective hull of D.
(3) Any module of finite endolength (that is, of finite length over its endomorphism ring) is

pure-injective. This can be proven by a detour through algebraic compactness.

Theorem 2.12. The indecomposable pure-injective modules of D are:

(1) D/Dπn, for n ∈ N>0.
(2) D[π∞], the Prüfer module of D.

(3) D̂, the π-adic completion of D.
(4) Q, the field of fractions of D.

The quotients D/Dπn for n ∈ N>0 are Artinian rings and EndD(D/Dπ
n) ∼= D/Dπn, so D/Dπn

is of finite endolength, which by Example 2.10 implies that D/Dπn are pure-injective. Example 2.10

justifies that D̂ is pure-injective, and that D[π∞] is injective. The field of fractions Q is also injective
as a module because of Baer’s criterion (in fact, Q is the injective hull ofD). Inspecting Definition 2.8
shows that all injective modules are pure-injective modules, so D[π∞] and Q are pure-injective. The
ideal Dπ is maximal, so π is prime in D, so the quotients D/Dπn for n ∈ N>0 are indecomposable.
The submodules of D[π∞] ∼= Q/D are

(2.13)
1
πnD

D
=

{ u

πn
| u /∈ Dπ

}
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for n ∈ N>0, so it is indecomposable. The ideal DJxK(x − π) ⊊ DJxK is prime, so the quotient

D̂ ∼= DJxK/DJxK(x− π) is indecomposable. Since D is a commutative domain, its field of fractions
Q is indecomposable as a module.

We can now draw the points of the Ziegler spectrum of D as follows.

Zg(D) Q

D[π∞] D̂

D/Dπ D/Dπ2 · · · D/Dπn · · ·

The reason for this arrangement is that it captures the Cantor–Bendixon rank of the points.

Namely, Q has Cantor–Bendixon rank 2, D[π∞] and D̂ both have Cantor–Bendixon rank 1, and
each of the D/Dπn for n ∈ N>0 has Cantor–Bendixon rank 0.

Similarly, the length and endolength of these modules will also give topological information about

the picture. The points Q, D[π∞], and D̂ do not have finite length, and for n ∈ N>0 the length of

D/Dπn is n. The endolength of Q is finite, D[π∞] and D̂ do not have finite endolength, and for
n ∈ N>0 the endolength of D/Dπn is n.

3. The topology of Zg(D)

Definition 3.1. A positive primitive condition, denoted ϕ, is a logical condition having the form

(3.2) ∃xk+1, . . . , xn

m∧
j=1

n∑
i=1

xidij = 0

where k,m, n ∈ N are fixed, {xi}i=k+1,...,n ⊆ M for some module M , and {dij}j=1,...,m
i=1,...,n ⊆ D. We

denote by ϕ(M) the set of solutions to the above system of equations. Namely

(3.3) ϕ(M) =

[x1, . . . , xk] ∈Mk | ∃xk+1, . . . , xn ∈M with
m∧
j=1

n∑
i=1

xidij = 0

 .

Observe that the set of solutions ϕ(M) is an Abelian group.

Example 3.4. The following are positive primitive conditions.

(1) The system of equations θ(x⃗, l⃗) of Definition 2.2.
(2) The condition Ix = 0 for I an ideal of D. Writing I = (g1, . . . , gn) for some generators

g1, . . . , gn, this condition is ∧ni=1xgi = 0.
(3) The condition I | x for I an ideal of D. Writing I = (g1, . . . , gn) as before, this condition is
∃x1, . . . , xn (x =

∑n
i=1 xigi).

Definition 3.5. The following sets form a basis of opens of Zg(D).

(3.6)

(
ϕ

ψ

)
= {N ∈ Zg(D) | ϕ(N) ⪈ ψ(N)}

This is equivalent to the usual definition giving the closed sets of Zg(D) in terms of definable
subcategories. Namely, letting X be a definable subcategory of modules, the closed sets of Zg(D)
are the set of isomorphism classes of indecomposable pure-injective modules in X .
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Example 3.7. The following open sets contain each of the points of Zg(D).

(1) D/Dπn for n ∈ N>0 is contained in

(3.8)
(Dπn−1 | x) ∧ (Dπx = 0)

(Dπn | x) ∧ (Dπx = 0)
=

{
D

Dπn

}
,

making it an isolated point.
(2) D[π∞] is contained in

(3.9)
(Dπx = 0)

(x = 0)
= {D[π∞]} ∪

{
D

Dπn
| n ∈ N>0

}
,

which has a neighborhood basis of opens formed by

(3.10)
(Dπn+1x = 0)

(Dπnx = 0)
= {D[π∞]} ∪

{
D

Dπm
| m ∈ N>n

}
for all n ∈ N>0.

(3) D̂ is contained in

(3.11)
(x = x)

(Dπ | x)
=

{
D̂
}
∪
{

D

Dπn
| n ∈ N>0

}
,

which has a neighborhood basis of opens formed by

(3.12)
(Dπn | x)
(Dπn+1 | x)

=
{
D̂
}
∪
{

D

Dπm
| m ∈ N>n

}
for all n ∈ N>0.

(4) Q is contained in the closure of both D[π∞] and D̂. Thus all open neighborhoods of Q must

contain both D[π∞] and D̂, and can only exclude finitely many of the D/Dπn for n ∈ N>0.
A neighborhood basis of opens is formed by

(3.13)
(x = x)

(Dπnx = 0)
= Zg(D) \

{
D

Dπm
| m ∈ N<n+1

}
=

(Dπn | x)
(x = 0)

for all n ∈ N>0.

Example 3.14. The closed points of Zg(D) are exactly Q and D/Dπn for n ∈ N>0.

We now draw a typical open set containing each of the points of Zg(D). The opens (3.8) look like

Zg(D)

{
D

Dπn

}
Q

D[π∞] D̂

D/Dπ D/Dπ2 · · · D/Dπn · · ·

the opens (3.10) look like
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Zg(D)

{D[π∞]} ∪
{

D
Dπm | m ∈ N>n

}
Q

D[π∞] D̂

D/Dπ · · · D/Dπn D/Dπn+1 · · ·

the opens (3.12) look like

Zg(D)

{
D̂
}
∪
{

D
Dπm | m ∈ N>n

}
Q

D[π∞] D̂

D/Dπ · · · D/Dπn D/Dπn+1 · · ·

and the opens (3.13) look like

Zg(D)

Zg(D) \
{

D
Dπm | m ∈ N<n+1

}
Q

D[π∞] D̂

D/Dπ · · · D/Dπn D/Dπn+1 · · ·
.

Corollary 3.15. The Ziegler spectrum of D is compact.

Proof. Let C = {Ui}i∈I be an open cover of Zg(D). If Zg(D) ∈ C we are done, so suppose Zg(D) /∈
C. Since C covers Q, it contains an open set of the form (3.13), say Zg(D)\{D/Dπm | m ∈ N<n+1}
for a fixed n ∈ N>0. This covers all Zg(D) except D/Dπ, . . . ,D/Dπn. Since C covers these points,
for each m = 1, . . . , n there must be an open set Uim ∈ C such that {D/Dπm} ∈ Uim . Then
{Zg(D) \ {D/Dπm | m ∈ N<n+1} , Ui1 , . . . , Uim} is a finite subcover of C. □
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