(Tensor) Triangular Geometry

Pablo S. Ocal (pablo.ocal@oist.jp)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY

Motivation

Let \mathcal{C} be a monoidal triangulated category. That is:

- \mathcal{C} is essentially small,
- \mathcal{C} is an additive category,
- $T: \mathcal{C} \to \mathcal{C}$ is an exact functor,
- there is a collection of exact triangles $a \to b \to c \to Ta$
- $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a symmetric biexact functor,
- $1 \in \text{Obj}(\mathcal{C})$ is the monoidal unit.

We want to do geometry with \mathcal{C} . That is, we want to draw captures the essential information within \mathcal{C} . Mathematically via a function σ which assigns to each object a of \mathcal{C} a close topological space X. Our goal is to find such a function.

 $\sigma: \operatorname{Obj}(\mathcal{C}) \longrightarrow \operatorname{Closed}(X)$

This function should be compatible with the structure of \mathcal{C} have the following wish list:

(SD1)
$$\sigma(0) = \emptyset$$
,
(SD2) $\sigma(a \oplus b) = \sigma(a) \cup \sigma(b)$ for all $a, b \in \text{Obj}(\mathcal{C})$,
(SD3) $\sigma(Ta) = \sigma(a)$ for all $a \in \text{Obj}(\mathcal{C})$,
(SD4) $\sigma(a) \subseteq \sigma(b) \cup \sigma(c)$ for all exact triangles $a \to b \to c$
(SD5) $\sigma(1) = X$,

(SD6) $\sigma(a \otimes b) = \sigma(a) \cap \sigma(b)$ for all for all $a, b \in \text{Obj}(\mathcal{C})$.

As it is posed, our goal is very easy! It suffices to take X =point, declaring $\sigma(0) = \emptyset$ and $\sigma(a) = \star$ for all nonzero $a \in$

	The universal space admitting suppo
	We would like to have a space more interests ambitious, we ask about the best space to dra this will be the final space admitting a suppor this space exists: Its points are certain subca
of \mathcal{C} ,	Definition 1. A support datum on a momenta C is a pair (X, σ) where X is a topologic every $a \in \text{Obj}(C)$ a closed subset $\sigma(a) \subseteq X$ (SD3), (SD4), (SD5), and (SD6).
a picture that y this is done ed subset of a	Theorem 2. The pair $(\operatorname{Spc}(\mathcal{C}), \operatorname{supp})$ is t \mathcal{C} , where $\operatorname{Spc}(\mathcal{C}) = \{\mathcal{P} \subsetneq \mathcal{C} \mid \mathcal{P} \text{ prime thick}$ and $\operatorname{supp}(a) = \{\mathcal{P} \in \operatorname{Spc}(\mathcal{C}) \mid a \notin \mathcal{P}\}$ for al
2. Namely, we	Being final means that if (X, σ) is ano then there exists a continuous function f $\sigma(a) = f^{-1}(\operatorname{supp}(a))$ for all $a \in \operatorname{Obj}(\mathcal{C})$. datum (X, σ) can be obtained from $(\operatorname{Spc}(\mathcal{C}),$
	Theorem 3. Let X be a quasi-compact quasi- Spc $(D^{perf}(X)) \cong X$
$c \to Ta \text{ of } \mathcal{C},$	Theorem 4. Let R be a commutative Noe $Spc(D^{perf}(R)) \cong Spec$
	Theorem 5. Let G be a finite group, then $\operatorname{Spc}(\operatorname{stmod}(\Bbbk G)) \cong \operatorname{Proj}(\operatorname{H})$
	Example 6. The Zariski spectrum of the $\operatorname{Spc}(\operatorname{D^{perf}}(\mathbb{Z})) \cong \overset{\bullet}{\longrightarrow}$
	Example 7. Let \Bbbk be an algebraically close $\operatorname{Spc}(\operatorname{D^b}(\Bbbk[x])) \cong \mathbb{A}^1_{\Bbbk} \cong$
	Example 8. Let \Bbbk be a field of characteristic
$= \{\star\} a single \\Obj(\mathcal{C}).$	$\operatorname{Spc}(\operatorname{stmod}(\Bbbk(C_2 \times C_2))) \cong$

orts [Bal05]

ting than just a point. Being aw pictures. Mathematically, ort datum for \mathcal{C} . Remarkably, ategories of \mathcal{C} .

noidal triangulated category ical space and σ assigns to $X \ satisfying \ (SD1), \ (SD2),$

the final support datum on k triangulated tensor ideal $ll \ a \in \operatorname{Obj}(\mathcal{C}).$

other support datum on \mathcal{C} , $: X \to \operatorname{Spc}(\mathcal{C})$ such that In other words, all support , supp).

iasi-separated scheme, then: X.

etherian ring, then: c(R).

1: $\mathrm{H}^{\bullet}(G, \mathbb{k})).$

integers.

sed field.

istic 2.

Generalizing to (non-monoidal) triangulated categories [BO24]

Theorem 9. Let $\operatorname{Sp}(\mathcal{C}) = \{ \mathcal{T} \subseteq \mathcal{C} \mid \mathcal{T} \text{ thick subcategory} \}$ and $\sup(a) =$ $\{\mathcal{T} \in \operatorname{Sp}(\mathcal{C}) \mid a \notin \mathcal{T}\}\$ for all $a \in \operatorname{Obj}(\mathcal{C})$. The pair $(\operatorname{Sp}(\mathcal{C}), \sup)$ is the final support datum on \mathcal{C} . *Proof.* Let (X, σ) be a support datum on \mathcal{C} , then $f: X \to \operatorname{Sp}(\mathcal{C})$ defined by $f(x) = \{a \in \mathcal{C} \mid x \notin \sigma(a)\}$ is the desired unique continuous map. \Box

Example 10. Let \Bbbk be a field.

Example 11. Let \Bbbk be an algebraically closed field.

$$\operatorname{Sp}(\operatorname{D^b}(\operatorname{Coh}(\mathbb{P}^1_{\mathbb{k}}))) \cong$$

References

- categories. J. Reine Angew. Math., 2005.

- line. EMS Ser. Congr. Rep., 2019.

- Compos. Math., 1997.

What happens if our category does not have a monoidal structure? We no longer need to care about the requirements involving the tensor product (SD5) and (SD6), but we can still ask for a universal space where pictures can be drawn. Surprisingly, this space is still an interesting one!

[Bal05] P. Balmer. The spectrum of prime ideals in tensor triangulated

[BO24] P. Balmer, P. S. Ocal. Universal support for triangulated categories. C. R. Math. Acad. Sci. Paris, 2024.

[BCR97] D. J. Benson, J. F. Carlson, J. Rickard. Thick subcategories of the stable module category. Fund. Math., 1997.

[BIK97] D. J. Benson, S. B. Iyengar, H. Krause. Stratifying modular representations of finite groups. Ann. of Math. (2), 2011.

[Brü07] K. Brüning. Thick subcategories of the derived category of a hereditary algebra. Homology Homotopy Appl., 2007.

[KS19] H. Krause, G. Stevenson. The derived category of the projective

[Nee92] A. Neeman. The chromatic tower for D(R). Topology, 1992.

[Tho97] R. W. Thomason. The classification of triangulated subcategories.