# Hochschild cohomology and Gerstenhaber bracket of twisted tensor product algebras

Pablo S. Ocal joint with Tekin Karadag, Dustin McPhate, Tolu Oke, and Sarah Witherspoon

Texas A&M University

July 8, 2019

# Setup

#### Definition

The Hochschild cohomology of a k algebra A is  $HH^*(A) = \operatorname{Ext}_{A^e}^*(A, A)$ .

## Definition (Čap, Schichl, Vanžura)

The twisted tensor product  $A \otimes_{\tau} B$  of A and B via  $\tau : B \otimes A \longrightarrow A \otimes B$  is  $A \otimes B$  with multiplication  $m_{\tau} = (m_A \otimes m_B) \circ (1 \otimes \tau \otimes 1)$ .

#### Goal

Understand  $HH^*(A \otimes_{\tau} B)$  in terms of  $HH^*(A)$  and  $HH^*(B)$ .

Given a resolution of A as  $A^e$  module, and a resolution of B as  $B^e$  module, we compute a resolution of  $A \otimes_{\tau} B$  as  $(A \otimes_{\tau} B)^e$  module.

### Outline

Extension of ideas by Grimley, Negron, Nguyen, Shepler, and Witherspoon:

- i. The bar resolutions of A and B are compatible with  $\tau$ .
- ii. There is a chain map isomorphism lifting the *twisted module structure* on these resolutions.
- iii. Construct the Gerstenhaber bracket from contracting homotopies.
- iv. These results descend to the Koszul resolution.

# Techniques and Results

## Technique(s): fancy diagram chasing



## Examples (Grimley, Lopes, Nguyen, Shirikov, Solotar, Witherspoon)

For some  $q \in k^*$ ,  $k \langle x, y \rangle / (x^2, y^2, xy + qyx)$ , and  $k \langle x, y \rangle / (xy - yx - y^2)$ .

Thank you!