# Hochschild cohomology and Gerstenhaber bracket of twisted tensor product algebras 

Pablo S. Ocal
joint with Tekin Karadag, Dustin McPhate,
Tolu Oke, and Sarah Witherspoon

Texas A\&M University

$$
\text { July 8, } 2019
$$

## Setup

## Definition

The Hochschild cohomology of a $k$ algebra $A$ is $H H^{*}(A)=\operatorname{Ext}_{A^{e}}^{*}(A, A)$.

## Definition (Čap, Schichl, Vanžura)

The twisted tensor product $A \otimes_{\tau} B$ of $A$ and $B$ via $\tau: B \otimes A \longrightarrow A \otimes B$ is $A \otimes B$ with multiplication $m_{\tau}=\left(m_{A} \otimes m_{B}\right) \circ(1 \otimes \tau \otimes 1)$.

## Goal

Understand $H H^{*}\left(A \otimes_{\tau} B\right)$ in terms of $H H^{*}(A)$ and $H H^{*}(B)$.

Given a resolution of $A$ as $A^{e}$ module, and a resolution of $B$ as $B^{e}$ module, we compute a resolution of $A \otimes_{\tau} B$ as $\left(A \otimes_{\tau} B\right)^{e}$ module.

## Outline

Extension of ideas by Grimley, Negron, Nguyen, Shepler, and Witherspoon:
i. The bar resolutions of $A$ and $B$ are compatible with $\tau$.
ii. There is a chain map isomorphism lifting the twisted module structure on these resolutions.
iii. Construct the Gerstenhaber bracket from contracting homotopies.
iv. These results descend to the Koszul resolution.

## Techniques and Results

## Technique(s): fancy diagram chasing



## Examples (Grimley, Lopes, Nguyen, Shirikov, Solotar, Witherspoon)

For some $q \in k^{*}, k\langle x, y\rangle /\left(x^{2}, y^{2}, x y+q y x\right)$, and $k\langle x, y\rangle /\left(x y-y x-y^{2}\right)$.

Thank you!

[^0]
[^0]:    

