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Abstract

The (ring structure of the) Hochschild cohomology of the tensor product of two algebras
was understood better thanks to Le and Zhou, who were able to express it in terms of
the Hochschild cohomology of the two algebras. Using work by Grimley, Nguyen, and
Witherspoon, as well as homotopy lifting techniques for Gerstenhaber brackets introduced
by Volkov, we generalize Le and Zhou’s result to some twisted tensor products. These have
important applications in some quantum complete intersections also studied by Lopes and
Solotar. This is joint work with Tolulope Oke and Sarah Witherspoon.
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1 Hochschild cohomology, cup product, and Gerstenhaber
bracket

Definition 1. Let A be a k-algebra (our algebras are unital and associative, I’m not a monster.
We define the Hochschild cohomology as): HHn(A) = ExtnAe(A,A) where Ae = A⊗Aop (is called
the enveloping algebra of A). It comes with two operations (defined on cochains):

^ : HHm(A)×HHn(A) −→ HHm+n(A),

[−,−] : HHm(A)×HHn(A) −→ HHm+n−1(A).

These are called the cup product and the Gerstenhaber bracket. These operations, together
with some compatibility conditions, make HH∗(A) into a Gerstenhaber algebra. This structure
can be thought of as a graded Lie algebra. To define the cup and the bracket operations, the
“bar resolution” is used, which is just a bunch of tensor products of A over the ground field.
The cup product makes HH∗(A) into a graded commutative algebra, and now in the world
of commutative things hopefully understanding this is easier. However, the payoff is that the
Gerstenhaber bracket is complicated.
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2 Le-Zhou’s result, Grimley-Nguyen-Witherspoon’s result,
and techniques

Theorem 2 (Le-Zhou, 2014). Let A and B be k-algebras, at least one of them finite dimensional.
Then (as Gerstenhaber algebras):

HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B).

Remark 3. It is a fact that if A and B are graded by the commutative groups F and G respec-
tively, then HH∗(−) is bigraded: HH∗,∗(−).

Theorem 4 (Grimley-Nguyen-Witherspoon, 2017). Let A and B be k-algebras, at least one
of them finite dimensional, graded by the commutative groups F and G respectively. Then (as
Gerstenhaber algebras):

HH∗,F
′⊕G′

(A⊗t B) ∼= HH∗,F
′
(A)⊗HH∗,G

′
(B)

where A⊗t B is the twisted tensor product by a bicharacter t : F ⊗Z G→ k×, and:

F ′ =
⋂
g∈G

ker(t(−, g)), G′ =
⋂
f∈F

ker(t(f,−)).

The k-vector space structure of A ⊗t B is given by A ⊗ B, and the multiplication is given
by taking A ⊗ B ⊗ A ⊗ B, permuting the middle B ⊗ A and adding a scalar given by t, and
then canonically multiplying together A⊗ A and B ⊗ B. You may complain, and rightfully so,
that I have not told you how one can get a cup product or a Gerstenhaber bracket on a tensor
product of Gerstenhaber algebras. For now, suffice to say that they exist and they satisfy what
they should satisfy. The explicit expressions are:

(α⊗ β) ^ (α′ ⊗ β′) = (−1)m
′n(α ^ α′)⊗ (β ^ β′),

[α⊗ β, α′ ⊗ β′] = (−1)(m
′−1)n[α, α′]⊗ (β ^ β′) + (−1)m

′(n−1)(α ^ α′)⊗ [β, β′].

Remark 5. The main tools used are (obviously more things are required, but let me focus on
these two):

1. If P → A and Q→ B are resolutions (of A and B bimodules respectively, satisfying some
niceness conditions), then there is a chain (map) isomorphism (of A and B bimodules in
each degree):

σ : (P ⊗t Q)⊗A⊗tB (P ⊗t Q) −→ (P ⊗A P )⊗t (Q⊗B Q).

2. Alexander-Whitney and Eilenberg-Zilber maps.

The first isomorphism is specially useful when the resolution and the twisting map are known,
and a version of it that does not require inside knowledge of the twisting was generalized in
[Karadag-McPhate-Oke-Ocal-Witherspoon]. The second maps are obnoxious to deal with, and
they also require inside knowledge of the twisting, which means that using them to tackle the
general case of a twisted tensor product is impossible.
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3 Volkov’s techniques and our application

Definition 6. Given A a k-algebra, let µP : P → A be a resolution of A-bimodules, ∆P : P →
P ⊗AP a diagonal map, and α ∈ HomAe(Pm, A) a cocycle. A homotopy lifting (of α with respect
to ∆P ) is (an A-bimodule chain homomorphism) ψα : P → P [1−m] such that:

d(ψα) = (α⊗ 1P − 1P ⊗ α)∆P , and µPψα is cohomologous to (−1)m−1αψ

for some (A-bimodule chain map) ψ : P → P [1] for which d(ψ) = (µP ⊗ 1P − 1P ⊗ µP )∆P .

The point of presenting the complete definition is to show that the definition of homotopy
lifting does not depend on a specific resolution, since such diagonal maps always exist. Moreover,
Volkov proved that for any resolution, for any diagonal, and for any cocycle, homotopy liftings
always exist! Moreover, they induce the Gerstenhaber bracket in cohomology! This is absolutely
fantastic.

Theorem 7. The bracket given at the chain level by:

[α, β] = αψβ − (−1)(m−1)(n−1)βψα

induces the Gerstenhaber bracket on Hochschild cohomology.

This method is inspired in results and work by Negron and Witherspoon, who in 2016 pub-
lished what now is a special case of these homotopy liftings, where they focused on Koszul-like
resolutions.

Lemma 8 (OOW). In the twisted tensor product setup, let P → A and Q → B be resolutions
of algebras (with the necessary finiteness conditions):

ψα⊗tβ = ψα ⊗t (1Q ⊗B β)∆Q + (−1)m(α⊗A 1P )∆P ⊗t ψβ

is a homotopy lifting of α⊗t β (in terms of homotopy liftings of α and β).

Theorem 9 (OOW). As Gerstenhaber algebras (in the twisted tensor product setup, and assum-
ing the necessary finiteness conditions, we have):

HH∗,F
′⊕G′

(A⊗t B) ∼= HH∗,F
′
(A)⊗HH∗,G

′
(B).

Proof. Use the chain isomorphism σ as well as the Koszul sign convention (for both the Lemma
and the Theorem).

By expanding the conditions of Volkov’s homotopy lifting, being careful with what constitutes
a diagonal for the twisted tensor product of resolutions, and checking that the Gerstenhaber
bracket that I have not explicitly given you on the right hand side coincides with what is coming
from the left. This allows computing the Gerstenhaber bracket in the Hochschild cohomology of a
twisted tensor product A⊗tB, a notoriously difficult task, as long as we know the Gerstenhaber
bracket in the respective Hochschild cohomologies of A and B. This has applications in, for
example, deformations of algebras.
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4 Remarks and future work

1. We did not use the explicit formula for σ (at least not its full expression).

The original proofs required the explicit expression of σ because of the use of the Alexander-
Whitney and Eilenberg-Zilber maps, but we only used that σ makes some diagrams com-
mute. This should also hold for the version in [KMOOW], and is current work in progress.

2. Compute more examples.

New examples and complete computations are always useful, the current examples are
relatively small and relatively scarce.

3. Understand why some examples (like the Jordan plane) work: k〈x, y〉/(yx− xy − x2).

The complete Gerstenhaber algebra structure of the Jordan plane was first computed by
Lopes and Solotar, using spectral sequences and a lot of machinery. In [KMOOW] we also
computed it using more elementary and completely different methods; and although the
hypothesis that we required on the twisting map were not satisfied, using these elementary
techniques the conclusions of our main results held. That is, applying our constructions,
we were still able to compute the complete Gerstenhaber algebra structure. What are then
the correct hypothesis on the twist?

Thank you for your time!
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