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1 Schemes

Definition 1 (Connected). A scheme X is connected if its underlying topological space
is connected. A topological space is connected if for all nonempty open (closed) sets U
and V such that A ∩B = ∅ and A ∪B 6= X.

Proposition 2. For a ring A, the following are equivalent:

(1) The affine scheme Spec(A) is connected.

(2) A contains no nontrivial idempotents. That is, if e2 = e, then e = 0, 1.

(3) A is not isomorphic to a product of rings A1 ×A2.

Proof. (1) ⇐⇒ (2) If A has some idempotent e 6= 0, 1, then the sets V (e) and V (1− e)
are nonempty, disjoint, and their union is all of Spec(A). Indeed, e and 1 − e are not
units since they are zero divisors so V (e), V (1− e) 6= ∅ and using that e2 = e we have

V (e) ∪ V (1− e) = V (e(1− e)) = V (0) = Spec(A)

V (e) ∩ V (1− e) = V ((e) + (1− e)) = V ((1)) = ∅.

Therefore, Spec(A) is disconnected.
Conversely, if Spec(A) is disconnected, there are ideals a and b such that V (a) ∪

V (b) = Spec(A) and V (a)∩V (b) = ∅. This is equivalent to the statement that a+b = (1)
and a ∩ b ⊆ NA, where NA is the nilradical of A. This implies there exists x ∈ a
and y ∈ b such that x + y = 1. Multiply through by x and subtract to get that
x2 − x = xy ∈ a ∩ b. That is, x(x − 1) is nilpotent. For some n, we then have
xn(x−1)n = 0. Since xn and (x−1)n are coprime, from the Chinese remainder theorem,
we have that A ' A/(xn) × A/((x − 1)n). The preimages of (1, 0) and (0, 1) from this
map are nontrivial idempotents in A.

(2) ⇐⇒ (3) If A has a nontrivial idempotent e, then (e) and (1− e) are ideals such
that (e) + (1 − e) = (1), (e)(1 − e) = (e) ∩ (1 − e) = (0). From the Chinese remainder
theorem, this implies that the natural map A 7→ A/(e)×A/(1− e) is an isomorphism.

Conversely, if ϕ : A1 ×A2 7→ A is an isomorphism, ϕ(1, 0) and ϕ(0, 1) are nontrivial
idempotents of A.

Example 3. Any local ring (A,m) has no nontrivial idempotents and so the affine
scheme Spec(A) is connected. To see this, let e ∈ A be such that e(1− e) = 0. If e is a
unit, then multiplying this equation by e−1 implies that e = 1. If e is not a unit, then
e ∈ m so that 1 − e 6∈ m. That is, 1 − e is a unit. Multiplying the equation from before
by (1− e)−1, we have that e = 0. Therefore, e = 0 or e = 1 as desired.

Example 4. Projective n-space, Pn is connected since it is the union of n + 1 affine
schemes that are connected and their intersection is nonempty.

Definition 5 (Irreducible). A scheme is irreducible if its underlying topological space
is irreducible. A topological space X is irreducible if any of the following equivalent
conditions hold:
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1. For every pair of nonempty open sets U and V , U ∩ V 6= ∅.

2. X cannot be written as the union of two proper, closed sets.

3. Every nonempty open set is dense in X.

Proposition 6. An affine scheme Spec(A) is irreducible if and only if the nilradical NA

is prime.

Proof. If the nilradical NA is prime, let U = Spec(A) \ V (a) be a nonempty open set.
Since U is nonempty, V (a) 6= Spec(A). In particular, there is some prime ideal p such
that a 6⊆ p. This implies a 6⊆ NA so that NA ∈ U . Therefore, every pair of nonempty
open sets U and V , NA ∈ U ∩ V and so Spec(A) is irreducible.

If the nilradical NA is not prime, there exists a, b ∈ A such that ab ∈ NA, but
a, b 6∈ NA. This implies there are prime ideals p and q such that a 6∈ p and b 6∈ q. That
is, V (a) and V (b) are proper closed sets. We have the following since ab ∈ NA.

V (a) ∪ V (b) = V (ab) = Spec(A)

Therefore, Spec(A) is not irreducible.

Definition 7 (Reduced). A scheme (X,O) is reduced if for every open set U , O(U)
has no nilpotents. Equivalently, a scheme (X,O) is reduced if for every p ∈ X, Op has
no nilpotents.

Proposition 8. An affine scheme Spec(A) is reduced if and only if NA = 0.

Proof. If Spec(A) is reduced, since Spec(A) is open, O(Spec(A)) = A should have no
nilpotents. That is, NA = 0.

Conversely, if NA = 0, then all localizations of A have no nilpotents either. This
implies each Ap = Op has no nilpotents and that Spec(A) is reduced.

(The hard part of this, which is not included is showing the equivalence in the
definition.)

Definition 9 (Integral). A scheme (X,O) is integral if for every open set U , O(U) is
an integral domain. Equivalently, (X,O) is integral if it is reduced and irreducible.

Proposition 10. An affine scheme Spec(A) is integral if and only if A is an integral
domain.

Proof. If Spec(A) is integral, then O(Spec(A)) = A is an integral domain.
Conversely, if A is an integral domain, NA = 0 and is prime so Spec(A) is reduced

and irreducible.
(Again, the hard part is in the equivalence included in the definition.)

Definition 11 (Locally Noetherian). A scheme (X,O) is locally Noetherian if it can
be covered by affine schemes Spec(Ai), where each Ai is Noetherian.

3



Example 12. Projective n-space, Pn, can be covered by n+1 affine schemes in the usual
way and so is locally Noetherian.

Example 13. Any toric variety constructed by a fan is locally Noetherian by definition.

Definition 14 (Noetherian). A scheme X is Noetherian if it is locally Noetherian and
quasi-compact. Equivalently, X is Noetherian if it can be covered by finitely many open
affine schemes Spec(Ai) where each Ai is Noetherian.

Example 15. Any affine scheme defined from a Noetherian ring.

Example 16. Again, projective n-space is locally Noetherian and quasi-compact. There-
fore, Pn is Noetherian.

Definition 17 (Noetherian Space). A topological space X is a Noetherian space if any
of the following equivalent conditions hold:

1. Every ascending chain of open sets is eventually constant.

2. Every descending chain of closed sets is eventually constant.

Example 18. If A is a Noetherian ring, then Spec(A) is a Noetherian space. This
follows since every descending chain of closed sets corresponds uniquely to an increasing
chain of radical ideals in A (and vice versa). That is, every descending chain of closed
sets in Spec(A) is eventually constant.

Definition 19 (Open Subscheme). An open subscheme of a scheme X is a scheme
U whose topological space is an open subset of X, and whose structure sheaf OU is
isomorphic to the restriction OX |U of the structure sheaf of X.

Example 20. Let (X,OX) be a scheme, and let U be an open subset of X. Then
(U,OX |U ) is a scheme (an open subscheme of X). We call this the induced scheme
structure on the open set U .

Definition 21 (Closed Subscheme). A closed subscheme of a scheme X is an equivalence
class of closed immersions, where we say that the morphisms of schemes f : Y −→ X
and f ′ : Y ′ −→ X are equivalent if there is an isomorphism i : Y ′ −→ Y such that
f ′ = f ◦ i.

Definition 22 (Dimension). The dimension of a scheme is the dimension of its under-
lying topological space. The dimension of a topological space is the length of a maximal
ascending chain U0 ⊂ U1 ⊂ . . . ⊂ Un of irreducible subsets.

2 Morphisms of schemes

Definition 23 (Open Immersion). An open immersion is a morphism of schemes f :
X −→ Y which induces an isomorphism of X with an open susbcheme of Y .
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Definition 24 (Closed Immersion). A closed immersion is a morphism of schemes
f : X −→ Y such that f induces a homeomorphism on the topological spaces, sending X
to a closed subset of Y , and moreover the induced map of sheaves f# : OX −→ f∗OY is
surjective.

Example 25. Let A be a ring and I an ideal of A. Let X = Spec(A) and Y =
Spec(A/I). Then the ring homomorphism π : A −→ A/I induces a morphism of schemes
spec(π) : Y −→ X which is a closed immersion. The map spec(π) is a homeomorphism
of Y onto the closed subset V (I) of X, and the map of structure sheaves spec(π)# :
OX −→ spec(π)∗OY is surjective because it is surjective on the stalks.

Definition 26 (Separated Morphism). Let f : X → Y be a morphism of schemes. The
diagonal morphism is the unique morphism ∆ : X → X ×Y X whose composition with
both projection maps p1, p2 : X ×Y X → X is the identity map of X → X. We say
that the morphism f is separated if the diagonal morphism ∆ is a closed immersion. In
that case we say X is separated over Y . A scheme X is separated if it is separated over
SpecZ.

We can see the diagonal morphism as:

Y
s1

��
X

∆ //

1
22

1 ,,

X ×Y X
pX

::

pX

$$

S

X

s2

??

where note that all triangles and squares commute. Moreover, we have:

f is separated over Y ⇐⇒ ∆ is closed immersion. =⇒ X is separated over Y ,

X is separated ⇐⇒ X is separated over SpecZ.

Remark 27. Let k be a field, let X1 = X2 = A1
k = Spec(k[x]), let P be a point in A1

k

corresponding to the maximal ideal (x). Let U1 = U2 = A1
k − {(0)}, and ψ : U1 → U2 is

just the identification map (which induces an isomorphism of locally ringed space between
them). Then we can glue X1 and X2 via ψ, so we have X the gluing of X1 and X2.
In this case, ∆ is not a closed immersion because ∆(sp(X1)) = ∆(sp(X2)) is a set
containing one generic point, so its closure is the whole space, containing other generic
points, and thus it is not closed in sp(X).

Proposition 28. If f : X → Y is any morphism of affine schemes, then f is separated.

Corollary 29. A morphism f : X → Y is separated iff ∆(X) is a closed subset of
X ×Y X.

5



Theorem 30. Let f : X → Y be a morphism of schemes, X Noetherian. Then f is
separated if and only if the following holds. For all k field, and all R valuative ring with
quotient field k, T := Spec(R), U = Spec(k), i : U → T induced by the inclusion R ⊆ k
and given maps making commutative the diagram:

U //

i
��

X

f

��
T // Y

then there exists at most one morphism T → X making the following diagram commu-
tative:

U //

i
��

X

f
��

T //

>>

Y

Corollary 31. We have that:

1. Open and closed immersions are separated.

2. Composition of separated morphisms is separated.

3. Product of separated morphisms is separated.

4. If g ◦ f is a separated morphism, then f is separated.

5. A morphism f : X → Y is separated if and only if Y is covered by open subsets
{Ui}i∈I such that f−1(Ui)→ Vi is separated for all i ∈ I.

Definition 32 (Proper morphism). A morphism of schemes f : X → Y is proper if all
the following hold:

1. f is separated,

2. f is of finite type,

3. f is universally closed, that is:

(a) closed means image of any closed subsets is closed,

(b) universally closed means it is closed and for any scheme morphism Y ′ → Y
the corresponding morphism f ′ : X ′ → Y ′ obtained by base extension is also
closed, where X ′ = X ×Y Y ′.

Remark 33. Let k be a field, X be an affine line over k, that is, X = A1
k, then f : X → k

is separated and of finite type but not proper. Since X ×kX → X is not closed: we send
V (xy − 1) to X − {0}.
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Theorem 34. Let f : X → Y be a morphism of finite type, X Noetherian. Then f
is proper if and only if the following holds. For all k field and ∀R valuative ring with
quotient field k, T := Spec(R), U = Spec(k), i : U → T induced by the inclusion R ⊆ k
and given maps making the following diagram commutative:

U //

i
��

X

f

��
T // Y

then there exists at most one morphism T → X making the following diagram commu-
tative:

U //

i
��

X

f
��

T //

>>

Y

Note that in the last two Theorems we just changed f : X → Y from being any
morphism of schemes to being any morphism of schemes of finite type, and changed
being separated to being proper.

Corollary 35. We have that:

1. Cosed immersions are proper.

2. Composition of proper morphisms is proper.

3. Product of proper morphisms is proper.

4. If g ◦ f is a proper morphism, then f is proper.

5. Any projection morphism is proper.

Definition 36 (Projective n-space). Let Y be a scheme.

1. The projective n-space over Y , denoted by PnY , is PnY = PnZ ×SpecZ Y .

2. A morphism f : X → Y is projective if and only if f = i ◦ π where i : X → PnY is
a closed immersion and π : PnY → Y is a projection.

3. A morphism f : X → Y is quasi-projective if and only if f = j◦π where j : X → X ′

is open immersion and π : PnY → Y is projective morphism.

Example 37. Let A be a ring, S a graded ring with S0 = A such that S is finitely
generated as an A-algebra by S1. Then Proj(S)→ Spec(A) is a projective morphism.

Notice that since S is a quotient of A[x0, · · · , xn], then A[x0, · · · , xn] → S gives
Proj(S)→ Proj(A[x0, · · · , xn]) = PnA, and A→ A[x0, · · · , xn] gives Proj(A[x0, · · · , xn])→
Spec(A).
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Theorem 38. Projective morphisms of Noetherian schemes is proper. Quasi-projective
morphism of Noetherian schemes is of finite type and separated.

Proposition 39. Let k be an algebraically closed field, and t a functor from the category
of varieties to the category of schemes (notice that t is fully faithful). Then, the image
of t is the set of quasi-projective integral schemes over k. Moreover, the image of the
set of projective varieties is the set of projective integral schemes, and the image of any
variety V is an integral separted scheme of finite type over k.

Definition 40. An abstract variety is an integral separated scheme of finite type over
an algebraically closed field k. A complete abstract variety is an abstract variety which
is proper over k.

Remark 41. A modern counterexample of an abstract variety that is not in the image of
t may be constructed via a non-quasiprojective variety that is generated by a toric variety.
However, this is not completely clear to the authors since this may be a non-normal toric
variety.

3 Constructions

Definition 42 (S-scheme). Let S be a fixed scheme. A scheme over S, i.e. an S-scheme,
is a scheme X together with a morphism X → S

Example 43. A vector bundle E over a scheme S with a map E → S is an S-scheme.

Definition 44 (S-morphism). Let X and Y be S-schemes with respective maps p : X →
S and q : Y → S. Then an S-morphism is a morphism of schemes f : X → Y such that
p = q ◦ f

Example 45. Let S be a scheme and X with X → S an S-scheme. Viewing S as an
S-scheme with id : S → S, the S-morphism mapping S → X is called an S-section.

Proposition 46. Let k be an algebraically closed field. There is a natural fully faithful
functor from the category of varieties over k to schemes over k.

Definition 47 (Fibered Product). Let S be a scheme, and let (X, ρX), (Y, ρY ) be S-
schemes. The fibered product of X and Y over S, denoted X ×S Y , is a scheme
together with projection morphisms p1 : X ×S Y → X and p2 : X ×S Y → Y such that
ρX ◦p1 = ρY ◦p2 and also for any given S-scheme Z with given morphism f : Z → X and
g : Z → Y such that ρX ◦f = ρY ◦g, then there exists a unique morphism θ : Z → X×SY
such that f = p1 ◦ θ and g = p2 ◦ θ. i.e. the following diagram commutes for any such
Z:
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Y
ρY

��
Z

θ //

g
22

f ,,

X ×S Y
p2

::

p1

$$

S

X

ρX

??

Example 48. Let X = Spec(A), Y = Spec(B) and S = Spec(R) be affine schemes
where X and Y are S-schemes. Then A and B are R-algebras and the fibered product is
X ×S Y = Spec(A⊗R B), up to unique isomorphism.

Definition 49 (Fiber of a Morphism). Let f : X → Y be a morphism of schemes and
let y ∈ Y be a point. Let k(y) be the residue field of y, and let Spec(k(y)) → Y be
the inclusion map. Then the fiber of the morphism f over the point y is the scheme
Xf = X ×Y Spec(k(y)).

Example 50. Let k be an algebraically closed field. Suppose X = Spec(k[x, y, t]/(xy−t)),
Y = Spec(k[t]), and f : X → Y is the morphism determined by the natural homomor-
phism k[t]→ k[x, y, t]/(ty − x2). Then for a ∈ k, Xa is the irreducible hyperbola xy = a
when a 6= 0. If a = 0, X0 is the union of the x-axis and y-axis.
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