Basic Definitions from Hartshorne's "Algebraic Geometry"

Pablo S. Ocal, Elise Walker, Thomas Yahl, Byeongsu Yu

Spring 2019

1 Schemes

Definition 1 (Connected). A scheme X is connected if its underlying topological space is connected. A topological space is connected if for all nonempty open (closed) sets U and V such that $A \cap B = \emptyset$ and $A \cup B \neq X$.

Proposition 2. For a ring A, the following are equivalent:

- (1) The affine scheme Spec(A) is connected.
- (2) A contains no nontrivial idempotents. That is, if $e^2 = e$, then e = 0, 1.
- (3) A is not isomorphic to a product of rings $A_1 \times A_2$.

Proof. (1) \iff (2) If A has some idempotent $e \neq 0, 1$, then the sets V(e) and V(1-e) are nonempty, disjoint, and their union is all of Spec(A). Indeed, e and 1-e are not units since they are zero divisors so $V(e), V(1-e) \neq \emptyset$ and using that $e^2 = e$ we have

$$V(e) \cup V(1-e) = V(e(1-e)) = V(0) = \text{Spec}(A)$$
$$V(e) \cap V(1-e) = V((e) + (1-e)) = V((1)) = \emptyset.$$

Therefore, $\operatorname{Spec}(A)$ is disconnected.

Conversely, if Spec(A) is disconnected, there are ideals \mathfrak{a} and \mathfrak{b} such that $V(\mathfrak{a}) \cup V(\mathfrak{b}) = \operatorname{Spec}(A)$ and $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$. This is equivalent to the statement that $\mathfrak{a} + \mathfrak{b} = (1)$ and $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{N}_A$, where \mathfrak{N}_A is the nilradical of A. This implies there exists $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$ such that x + y = 1. Multiply through by x and subtract to get that $x^2 - x = xy \in \mathfrak{a} \cap \mathfrak{b}$. That is, x(x - 1) is nilpotent. For some n, we then have $x^n(x-1)^n = 0$. Since x^n and $(x-1)^n$ are coprime, from the Chinese remainder theorem, we have that $A \simeq A/(x^n) \times A/((x-1)^n)$. The preimages of (1,0) and (0,1) from this map are nontrivial idempotents in A.

(2) \iff (3) If A has a nontrivial idempotent e, then (e) and (1-e) are ideals such that (e) + (1-e) = (1), $(e)(1-e) = (e) \cap (1-e) = (0)$. From the Chinese remainder theorem, this implies that the natural map $A \mapsto A/(e) \times A/(1-e)$ is an isomorphism.

Conversely, if $\varphi : A_1 \times A_2 \mapsto A$ is an isomorphism, $\varphi(1,0)$ and $\varphi(0,1)$ are nontrivial idempotents of A.

Example 3. Any local ring (A, \mathfrak{m}) has no nontrivial idempotents and so the affine scheme Spec(A) is connected. To see this, let $e \in A$ be such that e(1 - e) = 0. If e is a unit, then multiplying this equation by e^{-1} implies that e = 1. If e is not a unit, then $e \in \mathfrak{m}$ so that $1 - e \notin \mathfrak{m}$. That is, 1 - e is a unit. Multiplying the equation from before by $(1 - e)^{-1}$, we have that e = 0. Therefore, e = 0 or e = 1 as desired.

Example 4. Projective n-space, \mathbb{P}^n is connected since it is the union of n + 1 affine schemes that are connected and their intersection is nonempty.

Definition 5 (Irreducible). A scheme is irreducible if its underlying topological space is irreducible. A topological space X is irreducible if any of the following equivalent conditions hold:

- 1. For every pair of nonempty open sets U and V, $U \cap V \neq \emptyset$.
- 2. X cannot be written as the union of two proper, closed sets.
- 3. Every nonempty open set is dense in X.

Proposition 6. An affine scheme Spec(A) is irreducible if and only if the nilradical \mathfrak{N}_A is prime.

Proof. If the nilradical \mathfrak{N}_A is prime, let $U = \operatorname{Spec}(A) \setminus V(\mathfrak{a})$ be a nonempty open set. Since U is nonempty, $V(\mathfrak{a}) \neq \operatorname{Spec}(A)$. In particular, there is some prime ideal \mathfrak{p} such that $\mathfrak{a} \not\subseteq \mathfrak{p}$. This implies $\mathfrak{a} \not\subseteq \mathfrak{N}_A$ so that $\mathfrak{N}_A \in U$. Therefore, every pair of nonempty open sets U and V, $\mathfrak{N}_A \in U \cap V$ and so $\operatorname{Spec}(A)$ is irreducible.

If the nilradical \mathfrak{N}_A is not prime, there exists $a, b \in A$ such that $ab \in \mathfrak{N}_A$, but $a, b \notin \mathfrak{N}_A$. This implies there are prime ideals \mathfrak{p} and \mathfrak{q} such that $a \notin \mathfrak{p}$ and $b \notin \mathfrak{q}$. That is, V(a) and V(b) are proper closed sets. We have the following since $ab \in \mathfrak{N}_A$.

$$V(a) \cup V(b) = V(ab) = \operatorname{Spec}(A)$$

Therefore, $\operatorname{Spec}(A)$ is not irreducible.

Definition 7 (Reduced). A scheme (X, \mathcal{O}) is reduced if for every open set U, $\mathcal{O}(U)$ has no nilpotents. Equivalently, a scheme (X, \mathcal{O}) is reduced if for every $\mathfrak{p} \in X$, $\mathcal{O}_{\mathfrak{p}}$ has no nilpotents.

Proposition 8. An affine scheme Spec(A) is reduced if and only if $\mathfrak{N}_A = 0$.

Proof. If Spec(A) is reduced, since Spec(A) is open, $\mathcal{O}(Spec(A)) = A$ should have no nilpotents. That is, $\mathfrak{N}_A = 0$.

Conversely, if $\mathfrak{N}_A = 0$, then all localizations of A have no nilpotents either. This implies each $A_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}$ has no nilpotents and that $\operatorname{Spec}(A)$ is reduced.

(The hard part of this, which is not included is showing the equivalence in the definition.) $\hfill \Box$

Definition 9 (Integral). A scheme (X, \mathcal{O}) is integral if for every open set $U, \mathcal{O}(U)$ is an integral domain. Equivalently, (X, \mathcal{O}) is integral if it is reduced and irreducible.

Proposition 10. An affine scheme Spec(A) is integral if and only if A is an integral domain.

Proof. If Spec(A) is integral, then $\mathcal{O}(\text{Spec}(A)) = A$ is an integral domain.

Conversely, if A is an integral domain, $\mathfrak{N}_A = 0$ and is prime so $\operatorname{Spec}(A)$ is reduced and irreducible.

(Again, the hard part is in the equivalence included in the definition.) \Box

Definition 11 (Locally Noetherian). A scheme (X, \mathcal{O}) is locally Noetherian if it can be covered by affine schemes $Spec(A_i)$, where each A_i is Noetherian.

Example 12. Projective n-space, \mathbb{P}^n , can be covered by n+1 affine schemes in the usual way and so is locally Noetherian.

Example 13. Any toric variety constructed by a fan is locally Noetherian by definition.

Definition 14 (Noetherian). A scheme X is Noetherian if it is locally Noetherian and quasi-compact. Equivalently, X is Noetherian if it can be covered by finitely many open affine schemes $Spec(A_i)$ where each A_i is Noetherian.

Example 15. Any affine scheme defined from a Noetherian ring.

Example 16. Again, projective n-space is locally Noetherian and quasi-compact. Therefore, \mathbb{P}^n is Noetherian.

Definition 17 (Noetherian Space). A topological space X is a Noetherian space if any of the following equivalent conditions hold:

- 1. Every ascending chain of open sets is eventually constant.
- 2. Every descending chain of closed sets is eventually constant.

Example 18. If A is a Noetherian ring, then Spec(A) is a Noetherian space. This follows since every descending chain of closed sets corresponds uniquely to an increasing chain of radical ideals in A (and vice versa). That is, every descending chain of closed sets in Spec(A) is eventually constant.

Definition 19 (Open Subscheme). An open subscheme of a scheme X is a scheme U whose topological space is an open subset of X, and whose structure sheaf \mathcal{O}_U is isomorphic to the restriction $\mathcal{O}_X|_U$ of the structure sheaf of X.

Example 20. Let (X, \mathcal{O}_X) be a scheme, and let U be an open subset of X. Then $(U, \mathcal{O}_X|_U)$ is a scheme (an open subscheme of X). We call this the induced scheme structure on the open set U.

Definition 21 (Closed Subscheme). A closed subscheme of a scheme X is an equivalence class of closed immersions, where we say that the morphisms of schemes $f : Y \longrightarrow X$ and $f' : Y' \longrightarrow X$ are equivalent if there is an isomorphism $i : Y' \longrightarrow Y$ such that $f' = f \circ i$.

Definition 22 (Dimension). The dimension of a scheme is the dimension of its underlying topological space. The dimension of a topological space is the length of a maximal ascending chain $U_0 \subset U_1 \subset \ldots \subset U_n$ of irreducible subsets.

2 Morphisms of schemes

Definition 23 (Open Immersion). An open immersion is a morphism of schemes $f : X \longrightarrow Y$ which induces an isomorphism of X with an open subcheme of Y.

Definition 24 (Closed Immersion). A closed immersion is a morphism of schemes $f: X \longrightarrow Y$ such that f induces a homeomorphism on the topological spaces, sending X to a closed subset of Y, and moreover the induced map of sheaves $f^{\#}: \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ is surjective.

Example 25. Let A be a ring and I an ideal of A. Let X = Spec(A) and Y = Spec(A/I). Then the ring homomorphism $\pi : A \longrightarrow A/I$ induces a morphism of schemes $\text{spec}(\pi) : Y \longrightarrow X$ which is a closed immersion. The map $\text{spec}(\pi)$ is a homeomorphism of Y onto the closed subset V(I) of X, and the map of structure sheaves $\text{spec}(\pi)^{\#} : \mathcal{O}_X \longrightarrow \text{spec}(\pi)_* O_Y$ is surjective because it is surjective on the stalks.

Definition 26 (Separated Morphism). Let $f: X \to Y$ be a morphism of schemes. The diagonal morphism is the unique morphism $\Delta: X \to X \times_Y X$ whose composition with both projection maps $p_1, p_2: X \times_Y X \to X$ is the identity map of $X \to X$. We say that the morphism f is separated if the diagonal morphism Δ is a closed immersion. In that case we say X is separated over Y. A scheme X is separated if it is separated over SpecZ.

We can see the diagonal morphism as:

where note that all triangles and squares commute. Moreover, we have:

f is separated over $Y \iff \Delta$ is closed immersion. $\implies X$ is separated over Y,

X is separated \iff X is separated over SpecZ.

Remark 27. Let k be a field, let $X_1 = X_2 = \mathbb{A}_k^1 = \operatorname{Spec}(k[x])$, let P be a point in \mathbb{A}_k^1 corresponding to the maximal ideal (x). Let $U_1 = U_2 = \mathbb{A}_k^1 - \{(0)\}$, and $\psi : U_1 \to U_2$ is just the identification map (which induces an isomorphism of locally ringed space between them). Then we can glue X_1 and X_2 via ψ , so we have X the gluing of X_1 and X_2 . In this case, Δ is not a closed immersion because $\Delta(sp(X_1)) = \Delta(sp(X_2))$ is a set containing one generic point, so its closure is the whole space, containing other generic points, and thus it is not closed in sp(X).

Proposition 28. If $f: X \to Y$ is any morphism of affine schemes, then f is separated. **Corollary 29.** A morphism $f: X \to Y$ is separated iff $\Delta(X)$ is a closed subset of $X \times_Y X$. **Theorem 30.** Let $f : X \to Y$ be a morphism of schemes, X Noetherian. Then f is separated if and only if the following holds. For all k field, and all R valuative ring with quotient field k, $T := \text{Spec}(R), U = \text{Spec}(k), i : U \to T$ induced by the inclusion $R \subseteq k$ and given maps making commutative the diagram:

then there exists at most one morphism $T \to X$ making the following diagram commutative:

Corollary 31. We have that:

- 1. Open and closed immersions are separated.
- 2. Composition of separated morphisms is separated.
- 3. Product of separated morphisms is separated.
- 4. If $g \circ f$ is a separated morphism, then f is separated.
- 5. A morphism $f: X \to Y$ is separated if and only if Y is covered by open subsets $\{U_i\}_{i \in I}$ such that $f^{-1}(U_i) \to V_i$ is separated for all $i \in I$.

Definition 32 (Proper morphism). A morphism of schemes $f : X \to Y$ is proper if all the following hold:

- 1. f is separated,
- 2. f is of finite type,
- 3. f is universally closed, that is:
 - (a) closed means image of any closed subsets is closed,
 - (b) universally closed means it is closed and for any scheme morphism $Y' \to Y$ the corresponding morphism $f': X' \to Y'$ obtained by base extension is also closed, where $X' = X \times_Y Y'$.

Remark 33. Let k be a field, X be an affine line over k, that is, $X = \mathbb{A}_k^1$, then $f : X \to k$ is separated and of finite type but not proper. Since $X \times_k X \to X$ is not closed: we send V(xy-1) to $X - \{0\}$.

Theorem 34. Let $f : X \to Y$ be a morphism of finite type, X Noetherian. Then f is proper if and only if the following holds. For all k field and $\forall R$ valuative ring with quotient field $k, T := \text{Spec}(R), U = \text{Spec}(k), i : U \to T$ induced by the inclusion $R \subseteq k$ and given maps making the following diagram commutative:

then there exists at most one morphism $T \to X$ making the following diagram commutative:

Note that in the last two Theorems we just changed $f : X \to Y$ from being any morphism of schemes to being any morphism of schemes of finite type, and changed being separated to being proper.

Corollary 35. We have that:

- 1. Cosed immersions are proper.
- 2. Composition of proper morphisms is proper.
- 3. Product of proper morphisms is proper.
- 4. If $g \circ f$ is a proper morphism, then f is proper.
- 5. Any projection morphism is proper.

Definition 36 (Projective *n*-space). Let Y be a scheme.

- 1. The projective n-space over Y, denoted by \mathbb{P}^n_Y , is $\mathbb{P}^n_Y = \mathbb{P}^n_{\mathbb{Z}} \times_{\operatorname{Spec}\mathbb{Z}} Y$.
- 2. A morphism $f: X \to Y$ is projective if and only if $f = i \circ \pi$ where $i: X \to \mathbb{P}_Y^n$ is a closed immersion and $\pi: \mathbb{P}_Y^n \to Y$ is a projection.
- 3. A morphism $f: X \to Y$ is quasi-projective if and only if $f = j \circ \pi$ where $j: X \to X'$ is open immersion and $\pi: \mathbb{P}^n_Y \to Y$ is projective morphism.

Example 37. Let A be a ring, S a graded ring with $S_0 = A$ such that S is finitely generated as an A-algebra by S_1 . Then $\operatorname{Proj}(S) \to \operatorname{Spec}(A)$ is a projective morphism.

Notice that since S is a quotient of $A[x_0, \dots, x_n]$, then $A[x_0, \dots, x_n] \to S$ gives $\operatorname{Proj}(S) \to \operatorname{Proj}(A[x_0, \dots, x_n]) = \mathbb{P}^n_A$, and $A \to A[x_0, \dots, x_n]$ gives $\operatorname{Proj}(A[x_0, \dots, x_n]) \to \operatorname{Spec}(A)$. **Theorem 38.** Projective morphisms of Noetherian schemes is proper. Quasi-projective morphism of Noetherian schemes is of finite type and separated.

Proposition 39. Let k be an algebraically closed field, and t a functor from the category of varieties to the category of schemes (notice that t is fully faithful). Then, the image of t is the set of quasi-projective integral schemes over k. Moreover, the image of the set of projective varieties is the set of projective integral schemes, and the image of any variety V is an integral scheme of finite type over k.

Definition 40. An abstract variety is an integral separated scheme of finite type over an algebraically closed field k. A complete abstract variety is an abstract variety which is proper over k.

Remark 41. A modern counterexample of an abstract variety that is not in the image of t may be constructed via a non-quasiprojective variety that is generated by a toric variety. However, this is not completely clear to the authors since this may be a non-normal toric variety.

3 Constructions

Definition 42 (S-scheme). Let S be a fixed scheme. A scheme over S, *i.e.* an S-scheme, is a scheme X together with a morphism $X \to S$

Example 43. A vector bundle E over a scheme S with a map $E \to S$ is an S-scheme.

Definition 44 (S-morphism). Let X and Y be S-schemes with respective maps $p: X \to S$ and $q: Y \to S$. Then an S-morphism is a morphism of schemes $f: X \to Y$ such that $p = q \circ f$

Example 45. Let S be a scheme and X with $X \to S$ an S-scheme. Viewing S as an S-scheme with $id: S \to S$, the S-morphism mapping $S \to X$ is called an S-section.

Proposition 46. Let k be an algebraically closed field. There is a natural fully faithful functor from the category of varieties over k to schemes over k.

Definition 47 (Fibered Product). Let S be a scheme, and let $(X, \rho_X), (Y, \rho_Y)$ be Sschemes. The fibered product of X and Y over S, denoted $X \times_S Y$, is a scheme together with projection morphisms $p_1 : X \times_S Y \to X$ and $p_2 : X \times_S Y \to Y$ such that $\rho_X \circ p_1 = \rho_Y \circ p_2$ and also for any given S-scheme Z with given morphism $f : Z \to X$ and $g : Z \to Y$ such that $\rho_X \circ f = \rho_Y \circ g$, then there exists a unique morphism $\theta : Z \to X \times_S Y$ such that $f = p_1 \circ \theta$ and $g = p_2 \circ \theta$. i.e. the following diagram commutes for any such Z:

Example 48. Let X = Spec(A), Y = Spec(B) and S = Spec(R) be affine schemes where X and Y are S-schemes. Then A and B are R-algebras and the fibered product is $X \times_S Y = Spec(A \otimes_R B)$, up to unique isomorphism.

Definition 49 (Fiber of a Morphism). Let $f : X \to Y$ be a morphism of schemes and let $y \in Y$ be a point. Let k(y) be the residue field of y, and let $Spec(k(y)) \to Y$ be the inclusion map. Then the fiber of the morphism f over the point y is the scheme $X_f = X \times_Y Spec(k(y)).$

Example 50. Let k be an algebraically closed field. Suppose X = Spec(k[x, y, t]/(xy-t)), Y = Spec(k[t]), and $f : X \to Y$ is the morphism determined by the natural homomorphism $k[t] \to k[x, y, t]/(ty - x^2)$. Then for $a \in k$, X_a is the irreducible hyperbola xy = a when $a \neq 0$. If a = 0, X_0 is the union of the x-axis and y-axis.