Math 110AH — Homework 2

5 October 2021

NAME AND UCLA ID:

Task 1: Read Sections 7, 8, and 9.

Exercise 1: Let $a, b \in \mathbb{Z}^+$. Repeated use of the Division Algorithm gives the Euclidean Algorithm, that is, a system of equations

$$a = bq_1 + r_1, \quad 0 < r_1 < b$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1}, \quad 0 < r_{k-1} < r_{k-2}$$

$$r_{k-2} = r_{k-1}q_k + r_k, \quad 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_kq_{k+1} + 0.$$

Show this ends. Show that $r_k = \gcd(a, b)$. Plugging in backwards gives $r_k = ax + by$ for some $x, y \in \mathbb{Z}$. Do all of this for a = 39493 and b = 19853 (including finding an appropriate x and y).

Exercise 2: Let a, b, c be non-zero integers. Let d = gcd(a, b). Show that the equation ax + by = c has a solution $x, y \in \mathbb{Z}$ if and only if d divides c. Moreover, show that if d divides c and $x_0, y_0 \in \mathbb{Z}$ is a solution, then the general integer solution is $x = x_0 + k(b/d)$ and $y = y_0 - k(a/d)$ for all $k \in \mathbb{Z}$.

Exercise 3: In the proof of the uniqueness of the Fundamental Theorem of Arithmetic, give two proofs to finish the argument after showing $p_1 = q_1$.

Exercise 4: Show the following.

- 1. Let R be an equivalence relation on A. Show that the equivalence classes \overline{A} of this equivalence relation partitions A. Conversely, let \mathcal{C} be a partition of A and define \sim on $A \times A$ saying that $a \sim b$ whenever a and b belong to the same set in \mathcal{C} . Show that \sim is an equivalence relation on A.
- 2. Through each integer point on the x-axis in the plane \mathbb{R}^2 draw a line perpendicular to the x-axis. Repeat this process with the y-axis. Define a (systematic) partition of the plane using this construction (being careful with points on various lines).

Exercise 5: Let $m \in \mathbb{Z}^+$, m > 1. Prove the following.

1. Congruence modulo m is an equivalence relation. In particular $\mathbb{Z} = \overline{0} \sqcup \overline{1} \sqcup \cdots \sqcup \overline{m-1}$, namely there are m equivalence classes. Let $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/\equiv \{0, \ldots, m-1\}$.

- 2. Let $a, b, c, d \in \mathbb{Z}$ satisfy $a \equiv c \mod m$ and $b \equiv d \mod m$, then $a + b \equiv c + d \mod m$ and $ab \equiv cd \mod m$, namely $\overline{a + b} = \overline{c + d}$ and $\overline{ab} = \overline{cd}$.
- 3. Define + and \cdot on $\mathbb{Z}/m\mathbb{Z}$ by $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \cdot \overline{b} = \overline{ab}$. Show that this is well-defined, namely if $\overline{a} = \overline{a'}$ and $\overline{b} = \overline{b'}$ then $\overline{a} + \overline{b} = \overline{a'} + \overline{b'}$ and $\overline{a} \cdot \overline{b} = \overline{a'} \cdot \overline{b'}$.
- 4. This + and \cdot make $\mathbb{Z}/m\mathbb{Z}$ into a commutative ring, namely they satisfy:
 - (a) Associativity of the sum.
 - (b) Commutativity of the sum.
 - (c) Existence of zero.
 - (d) Existence of additive inverses.
 - (e) Associativity of the multiplication.
 - (f) Commutativity of the multiplication.
 - (g) Existence of one.
 - (h) Right distributive law.
 - (i) Left distributive law.

Exercise 6: Let $c_1, c_2, c_3 \in \mathbb{Z}$. Find $x \in \mathbb{Z}$ such that $x \equiv c_1 \mod 11$, $x \equiv c_2 \mod 12$, and $x \equiv c_3 \mod 13$. Find the smallest positive $x \in \mathbb{Z}$ satisfying these equations if $c_1 = 3$, $c_2 = 2$, and $c_3 = 1$.

Exercise 7: Prove that there exist infinitely many primes congruent to 3 modulo 4.

Exercise 8: Let p be a prime number. Show that $a^p \equiv a \mod p$ for all $a \in \mathbb{Z}$.