Name and UCLA ID:

Task 1: Read Sections 10 and 11.

Exercise 1: For all $i \in I$ an indexing set let H_{i} be a subgroup of G a group. Prove that $\bigcap_{i \in I} H_{i}$ is a subgroup of G. Is $\bigcup_{i \in I} H_{i}$ a subgroup of G ?

Exercise 2: Let G be a group and W a subset of G. Show that:

$$
\langle W\rangle=\left\{g \in G \mid \exists w_{1}, \ldots, w_{r} \in W \text { and } n_{1}, \ldots, n_{r} \in \mathbb{Z} \text { with } g=w_{1}^{n_{1}} \cdots w_{t}^{n_{r}}\right\}
$$

Note that the $w_{1}, \ldots, w_{r} \in W$ need not be distinct.
Exercise 3: Let G be a group in which $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$. Show that G is abelian.

Exercise 4: Determine all groups up to order 6.
Exercise 5: Let p be a prime. Show that $F=\mathbb{Z} / p \mathbb{Z}$ is a field, namely that every non-zero element in the commutative ring $\mathbb{Z} / p \mathbb{Z}$ has a multiplicative inverse. Compute $|G|$ for $G=\mathrm{GL}_{n}(F), \mathrm{SL}_{n}(F), \mathrm{T}_{n}(F), \mathrm{ST}_{n}(F), \mathrm{D}_{n}(F)$. Hint: You can first show that F is a domain, namely a commutative ring satisfying that if $a b=0$ for $a, b \in F$, then $a=0$ or $b=0$. You can then show that any domain with finitely many elements is a field.

Exercise 6: Let $m_{i} \in \mathbb{Z}, m_{i}>1$, for $i=1, \ldots, n$, be pairwise relatively prime integers. Let $m=m_{1} \cdots m_{n}$. Let $\varphi(m)$ denote the order of the group $(\mathbb{Z} / m \mathbb{Z})^{\times}$, recall that by setting $\varphi(1)=1$ the function $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is called the Euler phi function. Show that there exists an isomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} \cong\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / m_{n} \mathbb{Z}\right)^{\times}$. In particular, we have $\varphi(m)=\varphi\left(m_{1}\right) \cdots \varphi\left(m_{n}\right)$. Compute $\varphi\left(p^{r}\right)$ for p prime and $r \in \mathbb{Z}^{+}$.

Exercise 7: Prove the Cyclic Subgroup Theorem, that is, let H be a subgroup of the cyclic group $g=\langle g\rangle$, let e be the identity of G, and let $n \in \mathbb{Z}^{+}$, then prove that:

1. $H=\{e\}$ or $H=\left\langle g^{m}\right\rangle$ where $m \geq 1$ is the least integer such that $g^{m} \in H$. If G is infinite then $H=\{e\}$ or H is infinite. If G is finite of order n then m divides n.
2. If $|G|=n$ and $m \in \mathbb{Z}$ divides n then $\left\langle g^{m}\right\rangle$ is the unique subgroup of G of order $n /|m|$.
3. If $|G|=n$ and $m \in \mathbb{Z}$ does not divides n then G does not have a subgroup of order m.
4. If $|G|=n$ and then the number of subgroups of G is equal to the number of divisors of $|G|$.
5. If $|G|=p$ prime then the only subgroups of G are $\{e\}$ and G.

Exercise 8: Let G be an abelian group, let $a, b \in G$ have finite order m, n respectively. Suppose that m and n are relatively prime, show that $a b$ has order $m n$. Is this true if G is not abelian? Prove your claim or give a counterexample.

Exercise 9: Let $n_{1}, \ldots, n_{r} \in \mathbb{Z}^{+}$, set $n=n_{1}+\cdots+n_{r}$. Use Lagrange's Theorem to prove that $\binom{n}{n_{1}, \ldots, n_{r}}=\frac{n!}{n_{1}!\cdots n_{r}!}$ is an integer.

