Math 110AH
Algebra (Honors)
Practice Problems for November 29, 2021

Problem 1.

Let $n \in \mathbb{Z}^{+}, n \leq 2$. Prove that A_{n} is the only subgroup of S_{n} of index two.

Solution: For $n=2$ then $S_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$ and $A_{2}=\{0\}$ is the only subgroup of index two. For $n>2$, then S_{n} contains a three cycle α. Let $T<S_{n}$ be a subgroup of index two and suppose that $\alpha \notin T$, so $S_{n} / T=\{T, \alpha T\}$. If $\alpha^{-1} \in T$ then all the powers of α^{-1} are also in T, a contradiction. Hence $\alpha^{-1} \notin T$ and both α and α^{-1} are in the coset αT. But then acting by left multiplication on G / T we have $\alpha T=T$, a contradiction. Hence $\alpha \in T$ for any three cycle $\alpha \in S_{n}$. Since T contains all three cycles, it must contain A_{n}, and since both T and A_{n} have index two, they must be equal.

Problem 2.

Let $n \in \mathbb{Z}^{+}, n \leq 3$. Find all normal subgroups of D_{n}.

Solution: Let $D_{n}=\left\langle r, f \mid f^{2}=r^{n}=f r f r=e\right\rangle$. Now $\langle r\rangle$ is normal in D_{n}, so all its subgroups are also normal. Noticing that $r^{i} f$ is conjugate to $a^{i+2} f$, we either have one conjugacy class containing f, or we have the two conjugacy classes $\left\{a^{2 i} f\right\}_{i \in \mathbb{Z}}$ and $\left\{a^{2 i+1} f\right\}_{i \in \mathbb{Z}}$. Thus for n odd the normal subgroups are of the form $\left\langle r^{i}\right\rangle$ for i dividing n, and for n even the normal subgroups are of the form $\left\langle r^{i}\right\rangle$ for i dividing $n,\left\langle r^{2}, f\right\rangle$, and $\left\langle r^{2}, r f\right\rangle$.

Problem 3.

Let $n \in \mathbb{Z}^{+}, n \leq 3$. Find the center of D_{n}.

Solution: For n even $Z\left(D_{n}\right)=\left\langle r^{n / 2}\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$, and for n odd $Z\left(D_{n}\right)=\langle e\rangle$. To see this, note that an element of the form r^{i} is central if and only if $r^{i}=r^{-1}$ so $i=n / 2$ so n must be even, and if an element of the form $r^{i} f$ is central then $n=2$.

Problem 4.

Let S be an infinite set, define $H=\{\sigma \in \Sigma(S) \mid \sigma(x)=x$ for all but finitely many $x\}$. Prove that H is a subgroup of $\Sigma(S)$.

Solution: Let $\sigma, \tau \in H$, we have that $\sigma(x) \neq x$ if and only if $x \in X$ for some finite set $X \subset S$, and $\tau(x) \neq x$ if and only if $x \in Y$ for some finite set $Y \subset S$. Thus $\sigma(\tau(x)) \neq x$ at most for $x \in X \cup Y$, which is a finite set.

Problem 5.

Let G and H be finite cyclic groups. Prove that $G \times H$ is cyclic if and only if $\operatorname{gcd}(|G|,|H|)=$ 1.

Solution: Let $G=\langle g\rangle,|G|=m, H=\langle h\rangle, H=n .(\Rightarrow)$ Let $\operatorname{gcd}(|G|,|H|)=k$ and $G \times H$ be cyclic. Then $\left\langle\left(g^{m / k}, 0\right)\right\rangle$ and $\left\langle\left(0, h^{n / k}\right)\right\rangle$ are two distinct subgroups of $G \times H$ of order k. Since cyclic groups have unique subgroups of each order, we must have $g^{m / k}=0=h^{n / k}$, which is only possible if $k=1$. (\Leftarrow) Let $\operatorname{gcd}(|G|,|H|)=1$, then $G \times H$ is an abelian group with elements $\langle(g, 0)\rangle$ and $\langle(0, h)\rangle$ of orders m and n respectively. Since $\operatorname{gcd}(|G|,|H|)=1$ then $\langle(g, h)\rangle$ has order $m n$, and since $|G \times H|=|G||H|=m n$ then we must have $G \times H=\langle(g, h)\rangle$.

Problem 6.

Let $n \in \mathbb{Z}^{+}, n \leq 3$. Find the center of S_{n}.

Solution: Let $\sigma \in S_{n}, \sigma \neq e$, so $\sigma(i)=j$ for some $i \neq j$. Pick $k \neq i, j$, then $\sigma(i k) \neq(i k) \sigma$, so $Z\left(S_{n}\right)=\{e\}$.

Problem 7.

Let $H=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}, a d \neq 0\right\}$. Determine whether H is a normal subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ or not.

Solution: For $x=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $y=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ we have $x \in H, y \notin H$, and $y x y^{-1}=$ $\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right] \notin H$. Hence H is not normal in $\mathrm{GL}_{2}(\mathbb{R})$.

