Math 110AH Algebra (Honors)

Practice Problems for December 1, 2021

Problem 1.

Find all the elements of $M_2(\mathbb{Z})$ that have multiplicative inverses.

Solution: Let $A, B \in M_2(\mathbb{Z})$ with AB = 1. Then $1 = \det(1) = \det(AB) = \det(A) \det(B)$ so $\det(A) = \pm 1$. The converse is also true.

Problem 2.

Let G be a cyclic group of order $n \in \mathbb{Z}^+$ divisible by $k \in \mathbb{Z}^+$. Prove that G has exactly one subgroup of order k.

Solution: Let $G = \langle g \rangle$, the unique subgroup of order k is the subgroup $\langle g^{n/k} \rangle$.

Problem 3.

Let G be a finite group. Prove that the following are equivalent.

- 1. G has prime order.
- 2. G is not trivial and G has no proper subgroups.
- 3. $G \cong \mathbb{Z}/p\mathbb{Z}$ for some prime $p \in \mathbb{Z}^+$.

Solution: $(1. \Rightarrow 2.)$ If G has prime order then G is not trivial. Also, G has no proper subgroups by Lagrange's Theorem.

 $(2. \Rightarrow 3.)$ If G is not trivial and has no proper subgroups, then there is an element $g \in G$ such that $g \neq e$, and then the subgroup $\langle g \rangle$ must be the whole G. By the classification of cyclic groups, we have $G \cong \mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{Z}^+$. If n is composite then there exists a proper subgroup of G, so n must be prime.

 $(3. \Rightarrow 1.)$ If $G \cong \mathbb{Z}/p\mathbb{Z}$ for some prime $p \in \mathbb{Z}^+$, then G has order the prime p.

Problem 4.

Let $p \in \mathbb{Z}^+$ be prime, $n \in \mathbb{Z}^+$. Define $p(\mathbb{Z}/p^n\mathbb{Z})$ and prove that $p(\mathbb{Z}/p^n\mathbb{Z}) \cong \mathbb{Z}/p^{n-1}\mathbb{Z}$.

Solution: Let $\varphi : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ be the multiplication by p. We define $\operatorname{im}(\varphi) = p(\mathbb{Z}/p^n\mathbb{Z})$, we have $\operatorname{ker}(\varphi) = \{\overline{kp^{n-1}} | k \in \{0, \ldots, p-1\}\}$. By the First Isomorphism Theorem $(\mathbb{Z}/p^n\mathbb{Z})/\operatorname{ker}(\varphi) \cong \operatorname{im}(\varphi) = p(\mathbb{Z}/p^n\mathbb{Z})$, and using Lagrange's Theorem and the classification of cyclic groups we have that $(\mathbb{Z}/p^n\mathbb{Z})/\operatorname{ker}(\varphi) \cong \mathbb{Z}/p^{n-1}\mathbb{Z}$.

Problem 5.

Let G be a group, H a finitely generated normal subgroup such that G/H is finitely generated. Prove that G is finitely generated.

Solution: Let $X \subseteq H$ be the finite set that generates H, and $Y' \subseteq G/H$ be the finite set that generates G/H. Pick $Y \subseteq G$ the representatives of the cosets of G/H such that $Y' = \{yH|y \in Y\}$. Then $H = \langle x_1, \ldots, x_n \rangle$, so every $h \in H$ can be written as $h = x_1^{r_1} \cdots x_s^{r_s}$. Also $G/H = \langle y_1H, \ldots, y_mH \rangle$, and every $g \in G$ belongs to exactly one coset. Then if $g \in y_1H \cdots y_mH$ we have $g = \prod_{i=1}^m y_i h_i = \prod_{i=1}^m y_i x_1^{k_1^i} \cdots x_n^{k_n^i}$ so $g \in \langle x_1, \ldots, x_n, y_1, \ldots, y_m \rangle$. Since $X, Y \subseteq G$ we have $G = \langle x_1, \ldots, x_n, y_1, \ldots, y_m \rangle$.

Problem 6.

Let $n \in \mathbb{Z}^+$ and $\sigma, \tau \in S_n$. Prove that if σ is even then $\tau \sigma \tau^{-1}$ is even. Prove that if σ is odd then $\tau \sigma \tau$ is odd.

Solution: Note that τ and τ^{-1} have the same parity. Hence if τ decomposes into n transpositions, then τ and τ^{-1} contribute with 2n transpositions to the decomposition of $\tau \sigma \tau^{-1}$.

Problem 7.

Let $n \in \mathbb{Z}^+$. Prove that S_n is generated by (12) and $(1, 2, \dots, n-1, n)$. Prove that S_n is generated by (12) and $(2, 3, \dots, n-1, n)$.

Solution: We have $(1, 2 \cdots n - 1, n)^{i-1} (12) (1, 2 \cdots n - 1, n)^{-i+1} = (i, i + 1)$, which generates S_n . We also have $(2, 3 \cdots n - 1, n)^{i-1} (12) (2, 3 \cdots n - 1, n)^{-i+1} = (1, i + 1)$, which generates S_n .