
Math 110AH
Algebra (Honors)

Practice Problems for December 1, 2021



Problem 1.
Find all the elements of M2(Z) that have multiplicative inverses.

Solution: Let A,B ∈ M2(Z) with AB = 1. Then 1 = det(1) = det(AB) =
det(A) det(B) so det(A) = ±1. The converse is also true.

Problem 2.
Let G be a cyclic group of order n ∈ Z+ divisible by k ∈ Z+. Prove that G has exactly
one subgroup of order k.

Solution: Let G = 〈g〉, the unique subgroup of order k is the subgroup 〈gn/k〉.

Problem 3.
Let G be a finite group. Prove that the following are equivalent.

1. G has prime order.

2. G is not trivial and G has no proper subgroups.

3. G ∼= Z/pZ for some prime p ∈ Z+.

Solution: (1. ⇒ 2.) If G has prime order then G is not trivial. Also, G has no
proper subgroups by Lagrange’s Theorem.

(2. ⇒ 3.) If G is not trivial and has no proper subgroups, then there is an element
g ∈ G such that g 6= e, and then the subgroup 〈g〉 must be the whole G. By the
classification of cyclic groups, we have G ∼= Z/nZ for some n ∈ Z+. If n is composite
then there exists a proper subgroup of G, so n must be prime.

(3.⇒ 1.) If G ∼= Z/pZ for some prime p ∈ Z+, then G has order the prime p.

Problem 4.
Let p ∈ Z+ be prime, n ∈ Z+. Define p(Z/pnZ) and prove that p(Z/pnZ) ∼= Z/pn−1Z.

Solution: Let ϕ : Z/pnZ → Z/pnZ be the multiplication by p. We define im(ϕ) =
p(Z/pnZ), we have ker(ϕ) = {kpn−1|k ∈ {0, . . . , p − 1}}. By the First Isomorphism
Theorem (Z/pnZ)/ ker(ϕ) ∼= im(ϕ) = p(Z/pnZ), and using Lagrange’s Theorem and
the classification of cyclic groups we have that (Z/pnZ)/ ker(ϕ) ∼= Z/pn−1Z.



Problem 5.
Let G be a group, H a finitely generated normal subgroup such that G/H is finitely
generated. Prove that G is finitely generated.

Solution: Let X ⊆ H be the finite set that generates H, and Y ′ ⊆ G/H be the
finite set that generates G/H. Pick Y ⊆ G the representatives of the cosets of G/H
such that Y ′ = {yH|y ∈ Y }. Then H = 〈x1, . . . , xn〉, so every h ∈ H can be written
as h = xr11 · · ·xrss . Also G/H = 〈y1H, . . . , ymH〉, and every g ∈ G belongs to exactly

one coset. Then if g ∈ y1H · · · ymH we have g = Πm
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g ∈ 〈x1, . . . , xn, y1, . . . , ym〉. Since X, Y ⊆ G we have G = 〈x1, . . . , xn, y1, . . . , ym〉.

Problem 6.
Let n ∈ Z+ and σ, τ ∈ Sn. Prove that if σ is even then τστ−1 is even. Prove that if σ is
odd then τστ is odd.

Solution: Note that τ and τ−1 have the same parity. Hence if τ decomposes into n
transpositions, then τ and τ−1 contribute with 2n transpositions to the decomposi-
tion of τστ−1.

Problem 7.
Let n ∈ Z+. Prove that Sn is generated by (12) and (1, 2, · · · , n− 1, n). Prove that Sn

is generated by (12) and (2, 3, · · · , n− 1, n).

Solution: We have (1, 2 · · ·n − 1, n)i−1(12)(1, 2 · · ·n − 1, n)−i+1 = (i, i + 1), which
generates Sn. We also have (2, 3 · · ·n− 1, n)i−1(12)(2, 3 · · ·n− 1, n)−i+1 = (1, i+ 1),
which generates Sn.


