Math 110AH
Algebra (Honors)
Practice Problems for December 3, 2021

Problem 1.

Let $n \in \mathbb{Z}^{+}$and $\left\{G_{i}\right\}_{i=1}^{n}$ be groups. Prove that $Z\left(G_{1} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times \cdots \times Z\left(G_{n}\right)$.

Solution: Let $x, y \in G_{1} \times \cdots \times G_{n}$, note that $x y=y x$ if and only if $x_{i} y_{i}=y_{i} x_{i}$ for each $i=1, \ldots, n$.

Problem 2.

Let G be a group with H a subgroup of finite index $n \in \mathbb{Z}^{+}$. Prove that there is a non-trivial normal subgroup K of G with $K \leq H$ and $[G: K] \leq n$!.

Solution: Consider the action of G by left multiplication on the left cosets of H. This gives a group homomorphism $\lambda: G \rightarrow \Sigma(G / H)$. Set $K=\operatorname{ker}(\lambda)$, we have $K \unlhd G$ and $K \leq H$. Moreover by the First Isomorphism Theorem $G / K \cong \operatorname{im}(\lambda)$ and $\operatorname{im}(\lambda) \leq \Sigma(G / H)$ with $|\Sigma(G / H)|=[G: H]!=n!$, so by Lagrange's Theorem $[G: K]=|G / K| \leq|\Sigma(G / H)|=n$!. A slightly different application of Lagrange's Theorem proves that $[G: K]$ divides $n!$.

Problem 3.

Let $D_{n}=\left\langle f, r \mid f^{2}=r^{n}=f r f r=e\right\rangle$. Give a monomorphism $\varphi: D_{n} \rightarrow S_{n}$. Compute the cycle and transposition decomposition of $\varphi(f)$ and $\varphi(r)$.

Solution: First, we establish the notation of orienting everything on the vertical line (so we always have the first vertex of the polygon on the vertical line), this notation eliminates the dependence on whether n is even or odd. Now, set $\varphi(f)=$ $(2, n)(3, n-1)(4, n-2) \cdots\left(\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}+2\right\rfloor\right)$ and $\varphi(r)=(123 \cdots n)$. This defines a group monomorphism $\varphi: D_{n} \rightarrow S_{n}$, and indeed $\varphi(f)^{2}=e, \varphi(r)^{n}=e$, and $\varphi($ frfr $)=$ $\varphi(f) \varphi(r) \varphi(f) \varphi(r)=e$.

Problem 4.

Prove that S_{3} is not the direct product of any family of its proper subgroups. Let $p, n \in \mathbb{Z}^{+}$with p prime, prove that $\mathbb{Z} / p^{n} \mathbb{Z}$ is not the direct product of any non-trivial family of its proper subgroups. Prove that \mathbb{Z} is not the direct product of any family of its proper subgroups.

Solution: The proper subgroups of S_{3} are abelian, and the direct product of abelian groups is abelian, so since S_{3} is not abelian it cannot be the direct product of any family of its proper subgroups.
The proper subgroups of $\mathbb{Z} / p^{n} \mathbb{Z}$ are of the form $\left\langle p^{k}\right\rangle$ for some $k=1, \ldots, n-1$. The product of two such subgroups $\left\langle p^{i}\right\rangle \times\left\langle p^{j}\right\rangle$ for $i, j=1, \ldots, n-1$ contains the subgroups $\left\langle\left(p^{i-1}, 0\right)\right\rangle$ and $\left\langle\left(0, p^{j-1}\right)\right\rangle$, which are both distinct and both of order p. Since $\mathbb{Z} / p^{n} \mathbb{Z}$ contains a unique subgroup of order $p, \mathbb{Z} / p^{n} \mathbb{Z}$ is not the direct product of any family of its proper subgroups.

The group \mathbb{Z} is cyclic. The proper subgroups of \mathbb{Z} are of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}^{+}$, and the product of two such subgroups $n \mathbb{Z} \times m \mathbb{Z}$ is not cyclic.

Problem 5.

Give an example of non-trivial groups $H_{1}, H_{2}, K_{1}, K_{2}$ such that $H_{1} \times H_{2} \cong K_{1} \times K_{2}$ but none of H_{1}, H_{2} is isomorphic to any of the K_{1}, K_{2}.

Solution: Let $H_{1}=\mathbb{Z} / 2 \mathbb{Z}, H_{2}=\mathbb{Z} / 6 \mathbb{Z}, K_{1}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, K_{2}=\mathbb{Z} / 3 \mathbb{Z}$.

Problem 6.

Let G be an additive abelian group, let H and K be subgroups of G. Show that $G \cong H \oplus K$ if and only if there are homomorphisms $\iota_{1}: H \rightarrow G, \iota_{2}: K \rightarrow G$, $\pi_{1}: G \rightarrow H$, and $\pi_{2}: G \rightarrow K$ such that $\pi_{1} \iota_{1}=1_{H}, \pi_{2} \iota_{2}=1_{K}, \pi_{1} \iota_{2}=0, \pi_{2} \iota_{1}=0$, and $\iota_{1} \pi_{1}+\iota_{2} \pi_{2}=1_{G}$.

Solution: (\Rightarrow) Suppose $G \cong H \oplus K$, then every $g \in G$ can be written as $g=(h, k)$ for some $h \in H$ and $k \in K$. Define $\iota_{1}: H \rightarrow G, \iota_{2}: K \rightarrow G, \pi_{1}: G \rightarrow H$, and $\pi_{2}: G \rightarrow K$ via $\iota_{1}(h)=(h, 0), \iota_{2}(k)=(0, k), \pi_{1}(g)=h$, and $\pi_{2}(g)=k$, these are group homomorphisms satisfying what we want.
(\Leftarrow) Since $\pi_{1} \iota_{1}=1_{H}$ is bijective then ι_{1} is injective, π_{1} is surjective, and $H \cong \iota_{1}(H)$ is a subgroup of G. Similarly ι_{2} is injective, π_{2} is surjective, and $K \cong \iota_{2}(K)$ is a subgroup of G. Note that every $g \in G$ is of the form $g=1_{G}(g)=\iota_{1} \pi_{1}(g)+\iota_{2} \pi_{2}(g)=$ $\iota_{1}(h)+\iota_{2}(k)$ for $h=\pi_{1}(g) \in G$ and $k=\pi_{2}(g) \in G$. Define $\varphi: G \rightarrow H \oplus K$ via $\varphi(g)=\left(\pi_{1}(g), \pi_{2}(g)\right)$. This is the desired isomorphism.

Problem 7.

Let G be a group, H, K, N be nontrivial normal subgroups of G such that $G=H \times K$. Prove that either N is in the center of G, or N intersects one of H, K non-trivially.

Solution: Suppose that $H \cap N=K \cap N=\{e\}$. For any $h \in H$ and $n \in N$ we have $h n h^{-1} n \in N$ and $h n h^{-1} n \in H$ by the normality of N and H, so $h n h^{-1} n=e$. Similarly for any $k \in K$ and $n \in N$ we have $k n k^{-1} n=e$. Hence N is commutes with all the elements of H and K. Now, note that $G \cong H \times K$ with H, K normal in G implies that $G=H K$, so N commutes with all the elements of G.

Problem 8.

Let G_{1}, G_{2} be groups with $H_{1} \unlhd G_{1}, H_{2} \unlhd G_{2}$. Give a counterexample for each of the following statements.

1. If $G_{1} \cong G_{2}$ and $H_{1} \cong H_{2}$ then $G_{1} / H_{1} \cong G_{2} / H_{2}$.
2. If $G_{1} \cong G_{2}$ and $G_{1} / H_{1} \cong G_{2} / H_{2}$ then $H_{1} \cong H_{2}$.
3. If $H_{1} \cong H_{2}$ and $G_{1} / H_{1} \cong G_{2} / H_{2}$ then $G_{1} \cong G_{2}$.

Solution:

1. Note $G_{1}=\mathbb{Z}=G_{2}, H_{1}=2 \mathbb{Z} \cong 3 \mathbb{Z}=H_{2}, G_{1} / H_{1}=\mathbb{Z} / 2 \mathbb{Z} \not \approx \mathbb{Z} / 3 \mathbb{Z}=G_{2} / H_{2}$.
2. Note $G_{1}=D_{4}=G_{2}, H_{1}=\langle r\rangle \nsupseteq\left\langle r^{2}, f\right\rangle=H_{2}, G_{1} / H_{1} \cong \mathbb{Z} / 2 \mathbb{Z} \cong G_{2} / H_{2}$.
3. Note $G_{1}=\mathbb{Z} / 4 \mathbb{Z} \nsubseteq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=G_{2}, H_{1}=\langle 2\rangle \cong\langle(1,0)\rangle=H_{2}, G_{1} / H_{1} \cong$ $\mathbb{Z} / 2 \mathbb{Z} \cong G_{2} / H_{2}$.
