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1 Straight Lines and Linear Functions

1.1 The Cartesian Coordinate System

The collection of all rational and irrational numbers is called the real numbers, and will
be denoted by R. The real numbers may be represented geometrically by points on a
straight horizontal line, the so called real line: fix a point in the line to represent the
number 0, also called origin, and then select another point to its right to represent the
number 1, thus determining the scale for that number line. Positive numbers lie to the
right of the origin, and negative numbers lie to the left of the origin.

x-3 -2 -1 0 1 2 3

The Cartesian coordinate system is a way of representing points in a plane: we
take two perpendicular copies of the real line, making them intersect at their respective
origins, and having the positive numbers be above and to the right of this intersection,
while the negative numbers are below and to the left of the intersection. The horizontal
line is called the x axis and the vertical line is called the y axis.
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A point in the Cartesian coordinate system is represented by an ordered pair (x, y)
or coordinate, where x or abscissa and y or ordinate correspond to distances in the
respective axis. The axes divide the plane in four quadrants: (+,+), (−,+), (−,−), and
(+,−), which are called first, second, third, and fourth quadrants respectively.
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Definition 1.1. The distance d between two points P1(x1, y1) and P2(x2, y2) in the
plane is given by:

d =
√

(x2 − x1)2 + (y2 − y1)2.

Example 1.2. Draw in the plane and find the distance between the points:

1. (4, 3) and (2, 6),

2. (1, 3) and (4, 7),

3. (1, 0) and (4, 4).

Example 1.3. A marine biology experimental station is located on an island at the
point M = (0, 3000), while a power relay station is located on a straight coastal highway
at the point S = (10000, 0). A cable passing through the point Q = (2000, 0) is to be
laid to connect both stations. Assume that the x axis is the straight coastal highway,
that the cost of running the cable on land is $1.50 per unit, and that the cost on water
is $2.50 per unit. Draw a sketch of the situation and find the total cost for laying the
cable.
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Proposition 1.4. The equation of a circle with center C(h, k) and radius r is given
by:

(x− h)2 + (y − k)2 = r2.

Example 1.5. A furniture store offers free setup and delivery services to all points
within a 25km radius of its warehouse distribution center. If a house is located 20km
east and 14km south of the warehouse, does it incur a delivery charge? Draw a sketch
of the situation and justify your answer.

1.2 Straight Lines

A straight line L is uniquely determined by two distinct points (x1, y1) and (x2, y2). If
y1 = y2 we say that the line is horizontal. If x1 = x2 we say that the line is vertical. If
x1 6= x2 we say that the line has a slope

Definition 1.6. The slope m of L a non-vertical straight line L determined by two
distinct points (x1, y1) and (x2, y2) is defined as:

m =
y2 − y1
x2 − x1

.

Proposition 1.7. Let L be a non-vertical straight line. Show that the slope m of L
is independent of the two distinct points used to compute it, that is, if we have two
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pairs of distinct points (x1, y1) and (x2, y2), and (x′1, y
′
1) and (x′2, y

′
2), then:

y2 − y1
x2 − x1

=
y′2 − y′1
x′2 − x′1

.

The slope of a straight line is then a constant whenever it is defined. Interpreting
y2 − y1 as the vertical change in y and x2 − x1 as the horizontal change in x, the slope
m is a measure of the rate of change of y with respect to x.

Example 1.8. Sketch the straight line passing through the point (−2, 5) with slope
−4/3.

Example 1.9. Find the slope m of the line passing through the points (−1, 1) and (5, 3).
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Definition 1.10. We say that two distinct lines L1 and L2 are parallel whenever
m1 = m2 (their slopes are equal) or they are both vertical.

Example 1.11. Let L1 be a line passing through the points (−2, 9) and (1, 3). Let L2

be a line passing through the points (−4, 10) and (3,−4). Draw a sketch of these lines
and determine whether they are parallel or not.

Definition 1.12. A line L with slope m and passing through the point (x1, y1) is
represented by the equation:

y − y1 = m(x− x1).

This equation is called the point-slope form of the equation of the line L.

Example 1.13. Find an equation of the line that passes through the point (1, 3) and
has slope 2.
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Example 1.14. Find an equation of the line passing through the points (−3, 2) and
(4,−1).

Proposition 1.15. Let L be a straight line lying in the xy plane. Then L can be
represented by an equation involving the variables x and y.

Definition 1.16. Let L1 and L2 be two distinct non-vertical lines with slopes m1

and m2 respectively, we say that they are perpendicular whenever:

m1 =
−1

m2
.

Example 1.17. Find an equation of the line that passes through the point (3, 1) and
is perpendicular to the line of Example 1.13.
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A straight line L that is not horizontal nor vertical cuts the x axis and the y axis,
say at points (a, 0) and (0, b) respectively. We call a the x intercept of L, and we call b
the y intercept of L.

Definition 1.18. The slope-intercept form of a line L is given by:

y = mx+ b

where L has slope m and y intercept b.

Proposition 1.19. Let L be a line with slope m and y intercept b. Then the point-
slope form of L coincides with the slope-intercept form of L.

Example 1.20. Find an equation of the line that has slope 3 and y intercept −4.

Example 1.21. Determine the slope and y intercept of the line whose equation is
3x− 4y = 8.

Example 1.22. A painting was purchased for $50000 and it is expected to appreciate
in value at a constant rate of $5000 per year for the next 5 years. Write an equation
predicting the value of the painting in the next several years. What will be its value 3
years from the purchase date?
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Definition 1.23. A line L is represented by the equation:

Ax+By + C = 0

where A, B, and C are constants, and A, B are not both zero. This is called the
general form of a linear equation.

Theorem 1.24. 1. The equation of a straight line is a linear equation.

2. Every linear equation represents a straight line.

Example 1.25. Draw a sketch of the straight line represented by the equation 3x −
4y − 12 = 0.

Example 1.26. Find the slope, the point-slope form, the slope-intercept form, and the
general form, of the following line:
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1.3 Linear Functions and Mathematical Models

When applying Mathematics to solve real-world problems, we first need to formulate
these problems in the language of Mathematics. This process is called mathematical
modeling.

One of the most useful approximations of a real-world problem is via a linear function.

Definition 1.27. A function f is a rule that assigns to each value of x one and only
one value of y, and we denote this by y = f(x). Given a function f the variable x is
called the independent variable and the variable y is called the dependent variable.
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The collection X of all values that x may take is called the domain of f . The
collection Y of all values that y may take is called the range of f .

We denote by f : X −→ Y a function f with domain X and range Y .

Definition 1.28. The function f : R −→ R defined by:

f(x) = mx+ b

for some constants m and b is called a linear function.

Proposition 1.29. Given f and g two linear functions, exactly one of the following
happens: f is parallel to g but they not intersect, f and g are the same line, f and
g intersect in a unique point.

Proposition 1.30. Given f and g two linear functions, then:

c1f(x) + c2g(x) + c3

for any constants c1, c2, and c3 is also a linear function.

Given f and g two linear functions, their product f(x)g(x) is not always a linear
function: it suffices to take f(x) = x = g(x) to obtain f(x)g(x) = x2, which is already
simplified and does not have the form in Definition 1.28.

Example 1.31. A truck has an original value of $100000 and is to be depreciated linearly
over 5 years with a $30000 scrap value. Find an expression giving the book value at the
end of year t and draw a sketch of it. What will be the book value of the truck at the
end of the second year? What is the rate of depreciation of the truck? What will be the
book value of the truck at the end of the sixth year?
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When treating real-world problems, there are some special functions that provide
the management of a business with a measure of certain relevant quantities.

Definition 1.32. Let x denote the number of units of a product and p the price per
unit of the product.

1. The total cost function is C(x), the total cost of manufacturing x units of the
product.

2. The revenue function is R(x), the total revenue realized from the sale of x
units of the product.

3. The profit function is P (x) the total profit realized from manufacturing and
selling x units of the product. In particular P (x) = R(x)− C(x).

4. The demand function is an equation p = D(x) expressing the relationship
between the unit’s price and the quantity demanded.

5. The supply function is an equation p = S(x) expressing the relationship be-
tween the unit’s price and the quantity supplied.

Example 1.33. A manufacturer of iPhone cases has a monthly fixed cost of $15000,
a production cost of $28 per case, and a selling price of $51 per case. Find the cost
function, the revenue function, and the profit function per case.

Example 1.34. When a pair of Nike shoes at Academy are priced at $65, their demand
is of 1000 units. When they are priced at $85, their demand is of 600 units. Given
that the demand is linear, find the demand equation. Above what price will there be no
demand? What quantity would be demanded if the shoes were free?
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Example 1.35. Hamilton Beach will make available 12000 blenders when the unit price
is $100. At a unit price of $150, Hamilton Beach will market 16000 blenders. Knowing
that it is known to be linear, find the equation relating the unit price of a blender to the
quantity supplied. How many blenders will be marketed when the unit price is $200?
What is the lowest price at which a blender will be marketed?

1.4 Intersection of Straight Lines

Given two straight lines L1 and L2, they are represented by two linear functions that
we will also denote by f1 and f2. As we have seen in Proposition 1.29, given f1 and f2
they can either be parallel, be the same line, or intersect in a unique point.

Definition 1.36. Whenever f1 and f2 are the same, we say that there are an infinite
amount of points of intersection. Whenever f2 and f2 are parallel, we say that there
are no points of intersection. Whenever f1 and f2 intersect in a single point, we
say that there is a unique point of intersection.

Proposition 1.37. Given two linear functions f1(x) = m1x + b1 and f2(x) =
m2x+ b2 with a unique point of intersection, that point can be written as:(

b2 − b1
m1 −m2

,
m1

m1 −m1
(b2 − b1) + b1

)
and

(
b2 − b1
m1 −m2

,
m2

m1 −m1
(b2 − b1) + b2

)
.

To be safe, we can also check that:

m1

m1 −m1
(b2 − b1) + b1 =

m1

m1 −m1
(b2 − b1) +

m1 −m2

m1 −m2
b1 =

m1b2
m1 −m2

− m2b1
m1 −m2

m2

m1 −m1
(b2 − b1) + b2 =

m2

m1 −m1
(b2 − b1) +

m1 −m2

m1 −m2
b2 =

−m2b1
m1 −m2

+
m1b2

m1 −m2

which are indeed the same.
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Example 1.38. Draw a sketch and find the points of intersection of each of the following
pairs of lines:

1. 2x− 3y = 6 and 3x+ 6y = 16.

2. y = 3x− 4 and x+ 3y + 3 = 0.

Example 1.39. Johnson & Johnson manufactures rubbing oil at a cost of $4 per bottle,
sells them for $10 per bottle, and has a fixed production cost of $9000 per month.
Determine the break-even point of the manufacture of rubbing oil. What is the loss
sustained by the firm if only 1200 bottles are produced and sold in a month? What is
the profit if 2400 bottles are produced and sold in a month? How many units should the
firm produce in order to realize a minimum profit of $8000 in a month?
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Example 1.40. Let L1 and L2 be two non vertical straight lines in the plane, with
equations f1(x) = m1x+ b1 and f2(x) = m2x+ b2 respectively. Find conditions on m1,
m2, b1, and b2 so that:

1. L1 and L2 do not intersect.

2. L1 and L2 intersect at exactly one point.

3. L1 and L2 intersect at infinitely many points.

Example 1.41. The Converse All-Stars can be assembled using machines ShoeMaker1
or ShoeMaker2. Converse estimates that the monthly fixed costs of using ShoeMaker1 are
$18000, whereas the monthly fixed costs of using ShoeMaker2 are $15000. The variable
costs of assembling a pair of All-Stars using ShoeMaker1 and ShoeMaker2 are $15 and
$20 respectively. The shoes are sold for $50 a pair. Find the cost functions associated to
using each machine. Draw a sketch of the graphs of the cost functions and the revenue
functions, use one axis for each machine. Which machine should management choose to
maximize their profit if the projected sales are 450 pairs of shoes, and what would the
profit be? And 550 pairs? And 650 pairs?
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Example 1.42. Find conditions on a1, a2, b1, b2, c1, and c2 so that the system of linear
equations: {

a1x+ b1y = c1

a2x+ b2y = c2

1. Has no solution.

2. Has a unique solution.

3. Has infinitely many solutions.

Example 1.43. The Nespresso coffee maker has a demand of 8000 units when each
costs $260. If each costs $200, the demand increases to 10000 units. Nespresso will not
market its coffee maker if the price is $100 or lower, however, for each $50 increase in
the price above $100, they will market an additional 1000 units. Assuming both the
demand and supply equations are linear:

1. Find the demand equation.

2. Find the supply equation.

3. Find the equilibrium quantity and price.
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2 Systems of Linear Equations and Matrices

2.1 Systems of Linear Equations: An Introduction

When we solve linear equations simultaneously, for example when finding break-even
points or equilibrium points, we are solving systems of linear equations. We are not
restricted to only two variables, we may have more. The following definition generalizes
Definition 1.28 in that case.

Definition 2.1. The function f : Rn −→ R defined by:

f(x1, . . . , xn) = a1x1 + · · ·+ anxn + b

for some constants a1, . . . , an, b ∈ R is called a linear function in n variables.

Definition 2.2. A system of m linear equations in n variables is a collection of m
linear functions in n variables:

f1(x1, . . . , xn) = a11x1 + · · ·+ a1nxn + b1 = 0

...

fm(x1, . . . , xn) = am1x1 + · · ·+ amnxn + bm = 0

for some constants a11, . . . , a1n, b1, · · · , am1, . . . , amn, bm ∈ R.

We number first rows, then columns: the constant aij is in fi, accompanying xj .

Proposition 2.3. Given f and g two n linear functions, then:

c1f(x1, . . . , xn) + c2g(x1, . . . , xn) + c3

for any constants c1, c2, and c3 is also an n linear function.

This is similar to Proposition 1.30 with the bookkeeping of the additional variables.

Definition 2.4. A solution of a system of m linear equations in n variables is a
collection of n constants c1, . . . , cn satisfying all the individual equations simultane-
ously.

However, we may still have situations where solutions do no exist. The following is a
graphical representation of a system of three equations in three variables where we have
infinitely many solutions for any pair of equations, but no solutions as a whole.
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Proposition 2.5. Given a system of m linear equations in n variables and c1, . . . , cn
a solution to that system, if we either:

1. replace a function of the defining system by its multiplication by a non-zero
constant,

2. replace a function of the defining system by its addition by any other linear
function defining the system,

then c1, . . . , cn remains a solution to that system.

Whenever we are faced with a system of two linear equations in two variables, there
are two standard ways of solving it. Before starting to solve the system, we always want
to start with a simplified system, meaning the equations need to be in general form.
This is always a step that is necessary for both methods.

The substitution method is as follows:

1. Choose one equation and one variable. Solve that equation for that variable: put
that variable to one side of the equal sign and everything else to the other side.

2. Substitute what was found in the other equation. This now becomes one equation
in one variable. Solve this equation.

3. Substitute what was obtained in the original chosen equation, this gives a solution
for the other variable.

The elimination or addition method is as follows:

1. Multiply the equations by numbers such that we obtain opposite coefficients of
either the x or y variables. Add both equations.
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2. We obtain an equation in one variable. Solve this equation.

3. Substitute what was obtained in either original equation of the system. This now
becomes one equation in the remaining variable. Solve this equation.

However, we need to always keep in mind that in virtue of Proposition 1.29 our system
of equations may have one solution, an infinite number of solutions, or no solutions. The
methods above need to be interpreted in case our system of equations does not have a
single solution.

Example 2.6. Solve the system of equations:

2x− y = 1

3x+ 2y = 12

Example 2.7. Solve the system of equations:

2x− y = 1

6x− 3y = 3

Example 2.8. Solve the system of equations:

2x− y = 1

6x− 3y = 12
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Example 2.9. The total number of passengers riding the Brazos Transit District bus
during the morning is 2746. If the child’s fare is $1.25, the adult fare is $1.75, and the
total revenue from the fares during the morning is $4646, how many children and how
many adults rode the bus during the morning?

2.2 Systems of Linear Equations: Unique Solutions

The methods described for two linear equations with two variables can be generalized
for any number of equations and variables.

Example 2.10. Solve the system of equations:

2x+ 4y + 6z = 22

3x+ 8y + 5z = 27

−x+ y + 2z = 2
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However, when the number of equations and variables increases, there are faster
methods. For this, we need some nomenclature.

Definition 2.11. A matrix is an ordered rectangular array of numbers. A matrix
with m rows and n columns is said to have size m× n. We denote by aij the entry
in the i-th row and j-th column. We then write:

A =

a11 · · · a1n
...

...
am1 · · · amn

 .
Notice how this closely resembles the notation in Definition 2.1. This is not a coin-

cidence.

Definition 2.12. Given a system of m linear equations in n variables:

f1(x1, . . . , xn) = a11x1 · · ·+ a1nxn + b1 = 0

...

fm(x1, . . . , xn) = am1x1 · · ·+ amnxn + bm = 0

we say that the coefficient matrix of the linear system is:a11 · · · a1n
...

...
am1 · · · amn

 ,
we say that the column of constants of the linear system is:−b1...

−bm

 ,
we say that the augmented matrix of the linear system is:a11 · · · a1n −b1

...
...

...
am1 · · · amn −bm

 .
Example 2.13. Give the coefficient matrix, the column of constants, and the augmented
matrix, of each of the following systems of equations:

8x− 14y + 6z = 21
3x+ y + 5z = 47
7x− 2y + z = 13

,
x+ 9y − 12z = 3
7x+ y − 6z = 8

2x− 5y + 4z = 2
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Definition 2.14. We say that a matrix is in row-reduced form if it satisfies all of
the following conditions:

1. Each row consisting entirely of zeros lies below any other row having non-zero
entries.

2. The first non-zero entry in each row is 1.

3. In any two successive non-zero rows, the leading 1 in the lower row lies to the
right of the leading 1 in the upper row.

4. If a column containg a leading 1, then the other entries in that column are
zeros.

Example 2.15. Determine which of the following matrices are in row-reduced form. If
a matrix is not in row-reduced form, state which condition is violated.1 0 0 0

0 1 0 0
0 0 1 3

 ,
0 1 2 −2

1 0 0 3
0 0 1 2

 ,
1 2 0 0

0 0 1 3
0 0 2 1

 ,
1 0 2 0

1 0 1 0
0 0 0 1

 ,
0 0 0 0

1 0 0 3
0 1 0 2



Definition 2.16. We call elementary row operations to the following row opera-
tions:

1. Interchange any two rows. We denote by Ri ↔ Rj the interchange of row i
and j.

2. Replace any row by a non-zero constant multiple of itself. We denote by cRi

the replacement of row i with c times row i.

3. Replace any row by the sum of that row and a constant multiple of any other
row. We denote by Ri + cRj the replacement of row i with the sum of row i
and c times row j.
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As we will see in Section 2.5, the elementary row operations can themselves be
expressed as matrices. A key aspect is that if a matrix is given by a system of equations,
then Proposition 2.5 assures us that doing elementary row operations to the matrix
does not change the solutions to the original system of equations. The elementary row
operations can then be used to simplify the matrices encoding the information given by
a system of equations.

Example 2.17. Given the system of equations:

2x− y − z = 0

3x+ 2y + z = 7

x+ 2y + 2z = 5

write its augmented matrix. What is the augmented matrix after R2 ↔ R3? If we then
do the elementary row operation 1

2R1, what is the augmented matrix? If we then do the
elementary row operation R1 + 2

3R2, what is the augmented matrix?

One of the most important things that elementary row operations allow us to do is
to transform any column into a column with a single one (in any given position) and
everything else zeros:

a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · amj
...

...
...

am1 · · · amj · · · amn


1

aij
Ri,R1−a1jRi,...,Rm−amjRi

−−−−−−−−−−−−−−−−−−−−→


· · · 0 · · ·

...
· · · 1 · · ·

...
· · · 0 · · ·

 .

This is called pivoting the matrix about the element aij .

Example 2.18. Pivot the given matrices about the desired elements:0 1 3 4
2 4 1 3
5 6 2 −4

 about a2,3,

 1 3 2 4
2 4 8 6
−1 2 3 4

 about a2,1,

1 2 3 5
0 −3 3 2
0 4 −1 3

 about a2,2.
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Definition 2.19. Given a linear system of equations, we call the Gauss-Jordan
elimination method to the following algorithm:

1. Write the augmented matrix corresponding to the linear system.

2. Interchange rows, if necessary, to obtain an augmented matrix in which the
first entry in the first row is non-zero. Pivot the matrix about this entry.

3. Interchange the second row with any row below it, if necessary, to obtain an
augmented matrix in which the second entry in the second row is non-zero.
Pivot the matrix about this entry.

4. Continue until the matrix is in row-reduced form.

If the system of linear equations has a unique solution, the Gauss-Jordan elimination
method always yields the matrix with 1 in the diagonal, and the solution can be read
directly from the matrix: each column corresponds to a variable, and looking at the only
row that has a 1 for that column, its corresponding value is the rightmost element in said
row. This is again consequence of Proposition2.5, since we are only doing elementary
row operations.

Example 2.20. Solve the system of equations:

2x− 2y + 8z = 9

−2x+ 2y + z = 3

x+ 2y − 3z = 8

using the Gauss-Jordan elimination method.
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Example 2.21. Solve the system of equations:

2x+ y + z = 180

x+ 3y + 2z = 300

2x+ y + 2z = 240

using the Gauss-Jordan elimination method.

Example 2.22. Solve the system of equations:

2x+ 3y + z = 6

x− 2y + 3z = −3

3x+ 2y − 4z = 12

using the Gauss-Jordan elimination method.
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Example 2.23. The Texas A&M Library System edits three types of notebooks: A3,
A4, and A5. Each of the three campuses, namely College Station, Galveston, and Qatar,
requires a different amount of minutes to review a dozen notebooks, and a notebook is
only approved after all campuses have reviewed it. The information is as shown on the
following table:

A3 A4 A5

College Station 9 12 15
Galveston 22 24 28

Qatar 6 8 8

if each campus has available a maximum of 80, 160, and 48 labor minutes, respectively,
per day, how many dozens of each type of notebook can be reviewed each day if the
editors work at full capacity?

2.3 Systems of Linear Equations: Undetermined and Overdetermined
Systems

The Gauss-Jordan elimination method can also be applied if the system of linear equa-
tions has infinitely many solutions, or no solutions. However, in those cases we have to
be careful and interpret the information encoded in the augmented matrix.

Some of the pathologies that we may encounter include having rows full of zeros, a
zero row in the matrix of coefficients with a non-zero in the column of constants, more
equations than variables, and more variables than equations.
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Example 2.24. Solve the system of equations:

x+ 2y − 3z = −2

3x− y − 2z = 1

2x+ 3y − 5z = −3

using the Gauss-Jordan elimination method.

Example 2.25. Solve the system of equations:

x+ y + z = −2

3x− y − z = 4

x+ 5y + 5z = −1

using the Gauss-Jordan elimination method.
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Example 2.26. Solve the system of equations:

x+ 2y = 4

x− 2y = 0

4x+ 3y = 12

using the Gauss-Jordan elimination method.

Example 2.27. Solve the system of equations:

x+ 2y − 3z + w = −2

3x− y − 2z − 4w = 1

2x+ 3y − 5z + w = −3

using the Gauss-Jordan elimination method.
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Example 2.28. The management of Enterprise has allocated $840000 to purchase 60
new cars to add to their existing fleet of rental cars. The company will choose from com-
pact, mid sized, and large cars, costing $10000, $16000, and $22000 each, respectively.
Find formulas giving the options available to Enterprise. Give two different specific
purchasing options.

2.4 Matrices

We can solve problems by realizing operations on matrices representing the data of said
problems. For this we should be able to enter data into matrix form, and also to interpret
the entries in a matrix as giving us specific information.

Example 2.29. In May 2019, the company Marshall produced four different loudspeaker
systems, Acton 1, Acton 2, Stanmore 1, and Stanmore 2, in three separate locations,
Dundee, Edinburgh, and London, as shown in the following table:

Acton 1 Acton 2 Stanmore 1 Stanmore 2

Dundee 320 280 460 280
Edinburgh 480 360 580 0

London 540 420 200 880

We can summarize the data in the following production matrix P :

P =

320 280 460 280
480 360 580 0
540 420 200 880


where the numbers in each row give the numbers of loudspeakers produced in the corre-
sponding location, while the numbers in each column give the production of a particular
model of loudspeaker in terms of the location where it was produced.
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1. What is the size of the matrix P?

2. What is the value of a24? What is its interpretation, that is, what does this number
mean in terms of production of loudspeakers?

3. Find the sum of the entries of the first row of P and interpret the result in terms
of production of loudspeakers.

4. Find the sum of the entries of the fourth column of P and interpret the result in
terms of production of loudspeakers.

Definition 2.30. We say that two matrices A and B are equal if they have the
same size, say m×n and their corresponding entries are equal, that is, aij = bij for
all i = 1, . . . ,m and j = 1, . . . , n.

Definition 2.31. Let A be a matrix of size m × n with entries aij, and c a real
number. Then its scalar product cA is the matrix obtained by multiplying each entry
of A by c, that is, with entries caij for all i = 1, . . . ,m and j = 1, . . . , n.

Definition 2.32. Let A and B be two matrices of the same size, say m× n. Their
sum A + B is the matrix obtained by adding the corresponding entries in the two
matrices: [a+ b]ij = aij + bij for all i = 1, . . . ,m and j = 1, . . . , n. Their difference
A − B is the matrix obtained by subtracting the corresponding entries in the two
matrices: [a− b]ij = aij − bij for all i = 1, . . . ,m and j = 1, . . . , n.
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Example 2.33. Consider the following matrices:

A =

 4 −5 6
−11 2 4

3 6 8

 , B =

−3 5 1
4 15 8
2 9 −1

 ,
C =

−8 7 12
5 −21 3
−9 18 −6

 , D =

 9 −7 −5
−12 38 9
14 −3 13

 .
1. Compute A+B, A+ C, and A+D.

2. Compute B +A, B + C, and B +D.

3. Compute C +A, C +B, and C +D.

4. Compute D +A, D +B, and D + C.

5. Do we have A + B = C + D? Do we have A + C = B + D? Do we have
A+D = B + C?

Proposition 2.34. Let A and B be two matrices of the same size, say m×n. Then
A+B = B +A, that is, matrix addition is commutative.

Proposition 2.35. Let A, B, and C be three matrices of the same size, say m×n.
Then A+ (B + C) = (A+B) + C, that is, matrix addition is associative.
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Definition 2.36. Let A be a matrix of size m×n with entries aij, then its transpose
AT is the n×m matrix with elements aij for all i = 1, . . . ,m and j = 1, . . . , n.

Example 2.37. Given:

A =

[
3 4
−1 2

]
, and B =

[
3 2
−1 2

]
find the matrix X satisfying the matrix equation 2X +B = 3A. What is the size of X?

Example 2.38. The Aggieland Credit Union offers three types of bank accounts: check-
ing, saving, and fixed deposit. They have three branches: one in William Joel Bryan
Parkway, one in University Drive, and one in Southwest Parkway. In August 2019, the
freshmen opened the following accounts:

Checking Saving Fixed deposit

W. J. Bryan Pkwy. 2820 1470 1120
University Dr. 1030 520 480

Southwest Pkwy. 1170 540 460

while (using the same column and rows as above) matrix B and C below represent the
number of accounts opened and closed by freshmen during September 2019, respectively:

B =

260 120 110
140 60 50
120 70 50

 , C =

120 80 80
70 30 40
60 20 40


1. Find matrix D representing the total number of each type of account at the name

of a freshman at the end of September 2019 in each location.
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2. It is expected that the number of accounts at each location increase by 10% during
October 2019. Write matrix E representing this expected increase.

2.5 Multiplication of Matrices

We have already seen a few operations that can be performed on matrices, some of
which required that the matrices had the same size. We can also define multiplication
of matrices, but for this we require that the number of column of the first agrees with
the number of rows of the second.

Definition 2.39. Let A be a matrix of size m× n and B a matrix of size n× r for
any natural numbers m,n, r. Their product AB is the matrix of size m×r obtained
component-wise by:

[AB]ij = ai1b1j + a21b2j + · · ·+ ai(n−1)b(n−1)j + ainbnj =

n∑
k=1

aikbkj .

for all i = 1, . . . ,m and j = 1, . . . , r.

That is, to obtain the entry (i, j) we multiply element-wise the i-th row of A by the
j-th column of B, and then we add these multiplications.
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Example 2.40. Let:

A =

[
3 1 4
1 2 3

]
, B =

1 3
4 −1
2 4


compute AB and BA.

If we use as an example A of size 2× 3 and B of size 3× 2, we can put the matrices
in such a way that this multiplication becomes intuitive. The multiplication AB can be
viewed as: b11 b12

b21 b22
b31 b32


[
a11 a12 a13
a21 a22 a23

] [
? ?
? ?

]
while the multiplication BA can be viewed as:[

a11 a12 a13
a21 a22 a23

]
b11 b12
b21 b22
b31 b32

 ? ? ?
? ? ?
? ? ?
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Example 2.41. Let:

A =

 3 2 1
−1 2 3
3 1 4

 , B =

 1 3 4
2 4 1
−1 2 3


compute AB and BA.

Proposition 2.42. If the products and sums of three matrices A, B, and C are
defined, then we have:

1. multiplication is associative: A(BC) = (AB)C,

2. multiplication distributes over addition: A(B + C) = AB +AC.

Example 2.43. Write the following system of linear equations as an equality of matrices,
and solve it:

2x− 4y + z = 6

−3x+ 6y − 5z = −1

x− 3y + 7z = 0
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Example 2.44. The skateboarding company enjoi is charged with an order of board
decks consisting of 900 Deedz Avocado, 1200 Pilz Pills, and 2000 Raining Cats & Dogs.
The company decides to manufacture 500 Deedz Avocado, 800 Pilz Pills, and 1300
Raining Cats & Dogs board decks in Los Angeles, while the rest of the order will be
manufactured in San Francisco. Each board deck requires different specifications of grip
tape, paint, and wood. Deedz Avocado requires 1.5 meters of grip tape, 30 square meters
of paint, and 5 pieces of wood. Pilz Pills requires 2 meters of grip tape, 35 square meters
of paint, and 8 pieces of wood. Raining Cats & Dogs requires 2.5 meters of grip tape,
25 square meters of paint, and 15 pieces of wood. The grip tape costs $4.50 per meter,
the paint costs $0.10 cents per square meter, and the wood costs $0.25 cents per piece.

1. Express in a 2 × 3 matrix P the production of types of board decks with respect
to the location where each is produced.

2. Express in a 3 × 3 matrix A (for activity) the amount of materials required to
manufacture each type of board deck.

3. Express in a 3× 1 matrix C the cost of each type of material.

4. Find how much each type of material must be purchased for each location.

5. What is the total cost of materials incurred by each plant and the total cost of
materials incurred by the enjoi skateboarding company in filling the order?
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Example 2.45. For the diet of the Texas A&M football players, Jimbo Fisher gives
them supplements for carbohydrates, proteins, and vitamins. The way they consume
these supplements are in form of Jack Link’s, Muscle Milk, and Powerade. The number
of grams of supplement in each one of these products is given by the following table:

Jack Link’s Muscle Milk Powerade

Carbohydrates 400 1200 800
Proteins 110 570 340
Vitamins 90 30 60

Kellen Mond consumes 7 Jack Link’s, 1 bottle of Muscle Milk, and 6 bottles of Powerade
for lunch, and 9 Jack Link’s, 3 bottles of Muscle Milk, and 2 bottles of Powerade for
supper. Calculate the following in matrix form, and explain the meaning of the entries
in each matrix:

1. The table multiplied by the transpose of Kellen Mond’s lunch.

2. The table multiplied by the transpose of Kellen Mond’s supper.

3. The table multiplied by the transpose of Kellen Mond’s lunch and supper.
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3 Linear Programming: A Geometric Approach

3.1 Graphing Systems of Linear Inequalities in Two Variables

In many world problems we are not concerned with equations, where we are trying to
achieve equality, but instead we have a goal that we would like to attain and have some
freedom on how to attain it. The mathematical representation of this is an inequality, and
when multiple such conditions are imposed we are solving systems of linear inequalities.
As in with systems of linear equations, we are not restricted to only two variables and
we may have more. The following definition generalizes Definition 2.2.

Definition 3.1. A system of m linear inequalities in n variables is a collection of
m linear functions in n variables:

f1(x1, . . . , xn) = a11x1 + · · ·+ a1nxn + b1 ≥ 0

...

fm(x1, . . . , xn) = am1x1 + · · ·+ amnxn + bm ≥ 0

for some constants a11, . . . , a1n, b1, · · · , am1, . . . , amn, bm ∈ R.

Where we again number first rows, then columns: the constant aij is in fi, accom-
panying xj . Notice that in particular the case where all inequalities are equal signs
recovers the usual system of equations. Moreover, notice that this definition also in-
cludes the case ≤ since the inequality f(x1, . . . , xn) ≤ 0 is equivalent to the inequality
−f(x1, . . . , xn) ≥ 0.

Definition 3.2. A solution of a system of m linear inequalities in n variables is a
collection of n constants c1, . . . , cn satisfying all the individual inequalities simulta-
neously.

Example 3.3. Determine the solution set for the inequality 2x+ 3y < 6.
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Proposition 3.4. The following is a procedure for graphing linear inequalities:

1. Draw the graph of the equation obtained by replacing the inequality by an equal-
ity. Draw a dotted line if a strict inequality was replaced. Draw a solid line if
not.

2. Pick a test point lying in one of the half planes that remain, and substitute the
values of the point in the inequality.

3. If the inequality is satisfied, the solution to the inequality includes the half plane
containing the test point. Otherwise, the solution to the inequality includes the
half plane not containing the test point.

Example 3.5. Determine the solution set for the inequality x− 2y > 0.

Example 3.6. Determine the solution set for the inequality x ≤ −1.

This can also be applied to systems of linear inequalities. In this case, the solution
is found by shading the corresponding regions for each inequality, and the region that is
shaded under all inequalities will be the solution.

Definition 3.7. A solution to a system of linear inequalities is called bounded if
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it can be enclosed by a circle of sufficiently large radius. Otherwise, it is called
unbounded.

Example 3.8. Determine the solution set for the system of inequalities:

4x+ 3y ≥ 12

x− y ≤ 0

Example 3.9. Determine the solution set for the system of inequalities:

x ≥ 0

y ≥ 0

x+ y ≤ 6

2x+ y ≤ 8

Example 3.10. Determine the solution set for the system of inequalities:

x ≥ 0

y ≥ 0

2x+ y ≥ 50

x+ 2y ≤ 40
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3.2 Linear Programming Problems

The solutions of systems of linear inequalities are usually plentiful. In virtue of Proposi-
tion 1.29 we may only have one solution, an infinite number of solutions, or no solutions
when we consider the equality. But when considering inequalities, this range is likely to
be expanded.

Suppose we have no solutions for the equality, then we have no solutions for the
inequality. Suppose we have infinitely many solutions for the equality, then we have
infinitely many solutions for the inequality. Suppose we have exactly one solution for
the equality, then for the inequality each equation restricts us to a half plane (instead of
restricting us to a single line like the equality does), so we are much more likely to have
additional solutions.

Because of this, we look for certain special solutions to a system of inequalities.

Definition 3.11. Consider a system of m linear inequalities in n variables:

f1(x1, . . . , xn) = a11x1 + · · ·+ a1nxn + b1 ≥ 0

...

fm(x1, . . . , xn) = am1x1 + · · ·+ amnxn + bm ≥ 0

where we want to optimize certain inequalities, say fi(x1, . . . , xn) ≥ 0 for some i.
We call objective functions the functions that we want to optimize. We call linear
constraints the functions that we do not want to optimize.

Definition 3.12. A linear programming problem consists of a linear objective func-
tion to be maximized or minimized subject to certain constraints in the form of linear
equalities or inequalities.

Example 3.13. Formulate but do not solve. The Texas A&M University fraternity
PΩP (Rho Omega Rho) is selling pulled pork and smoked brisket for a fundraiser. Each
slider of pulled pork will result in a profit of $1 and each plate of smoked brisket will
result in a profit of $1.20. To prepare a slider they require 2 minute of cutting time
and 1 minute of plating. To prepare a plate they require 1 minutes of cutting time
and 3 minute of plating. The volunteers for cutting are available for 3 hours, and the
volunteers for plating are available for 5 hours. How many sliders and how many plates
should PΩP make in order to maximize their profit?
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Example 3.14. Formulate but do not solve. A Texas A&M University sophomore is
advised that they should study for Math 141 at least 2.4 hours for Chapter 1, 2.1 hours
for Chapter 2, and 1.5 hours for Chapter 3. The ideal places of studying for this student
are Sweet Eugene’s and 1514 Pastries and Coffee. Whenever the student goes to Sweet
Eugene’s they are able to invest 0.4 hours in Chapter 1, 0.1 hours in Chapter 2, and
0.05 hours in Chapter 3, and their coffee amounts to $2. Whenever the student goes
to 1514 Pastries and Coffee they are able to invest 0.1 hours in Chapter 1, 0.15 hours
in Chapter 2, and 0.15 hours in Chapter 3, and their coffee amounts to $3. How many
times should the student go to Sweet Eugene’s and 1514 Pastries and Coffee in order
to meet the required hours of study, if the student wants to spend the least possible
amount of money on coffee?

Example 3.15. Formulate but do not solve. The United States Postal Service in the
Brazos County has two main offices, one in Texas Avenue and the other in University
Drive. The maximum volume of correspondence that these offices can manage is of
400 and 600 units per day, respectively. The correspondence is then shipped to three
warehouses to be distributed, one in Bryan, one in College Station, and one in Steep
Hollow. For the warehouses to meet their orders, the minimum daily requirements are
of 200, 300, and 400 units, respectively. The shipping costs from Texas Ave. to Bryan,
College Station, and Steep Hollow are of $0.20, $0.08, and $0.10 per unit, respectively.
The shipping costs from University Dr. to Bryan, College Station, and Steep Hollow
are of $0.12, $0.22, and $0.18 per unit, respectively. How should USPS organize the
shipping to warehouses if they want to meet the requirements of the distribution centers
and at the same time keep the shipping costs to a minimum?
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3.3 Graphical Solution to Linear Programming Problems

When dealing with linear programming problems, there is a usual nomenclature used.

Definition 3.16. Given a linear programming problem, consider the system of linear
inequalities that form it. These inequalities define a region S on the plane. The set
S is called a feasible set. Each point in S is called a feasible solution. The feasible
solution that maximizes the objective function from the linear programming problem
is called an optimal solution.

Note that an optimal solution may not be unique. In particular, sometimes we
encounter lines in our feasible set where all the points attain the same value on the
objective function.

Definition 3.17. Consider a linear programming problem. A line restricted to our
feasible set having all its points corresponding to the same value on the objective
function is called an isoprofit line.

Theorem 3.18. Consider a linear programming problem. If it has a solution, it
must occur at a corner. Moreover if the objective function takes its maximum or
minimum at two corners which lie on the same boundary line, then the objective
function is constant on every point between those two corners.

To solve linear programming problems, we use the method of corners, which is based
on Theorem 3.18. Given a linear programming problem, we proceed as follows:

1. Graph the feasible set.

2. Find the coordinates of all corner points (these are the points of intersection of the
constraints).

3. Evaluate the objective function at each corner.

Finally, to determine the optimal solution(s), find how many corners are there satisfying
the conditions that we want over the objective function. If there is only one corner,
then it constitutes a unique solution. If there are two corners, then all the points in the
segment between them is a solution.

Example 3.19. Find the maximum and minimum of P = 2x + 3y subject to the
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following system of inequalities:

x ≥ 0

y ≥ 0

x ≤ 10

x+ y ≥ 5

x− y ≤ 5

2x+ 3y ≤ 30

Example 3.20. The Texas A&M University fraternity PΩP (Rho Omega Rho) is selling
pulled pork and smoked brisket for a fundraiser. Each slider of pulled pork will result in
a profit of $1 and each plate of smoked brisket will result in a profit of $1.20. To prepare
a slider they require 2 minute of cutting time and 1 minute of plating. To prepare a
plate they require 1 minutes of cutting time and 3 minute of plating. The volunteers for
cutting are available for 3 hours, and the volunteers for plating are available for 5 hours.
How many sliders and how many plates should PΩP make in order to maximize their
profit?
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Example 3.21. A Texas A&M University sophomore is advised that they should study
for Math 141 at least 2.4 hours for Chapter 1, 2.1 hours for Chapter 2, and 1.5 hours
for Chapter 3. The ideal places of studying for this student are Sweet Eugene’s and
1514 Pastries and Coffee. Whenever the student goes to Sweet Eugene’s they are able
to invest 0.4 hours in Chapter 1, 0.1 hours in Chapter 2, and 0.05 hours in Chapter 3,
and their coffee amounts to $2. Whenever the student goes to 1514 Pastries and Coffee
they are able to invest 0.1 hours in Chapter 1, 0.15 hours in Chapter 2, and 0.15 hours
in Chapter 3, and their coffee amounts to $3. How many times should the student go
to Sweet Eugene’s and 1514 Pastries and Coffee in order to meet the required hours of
study, if the student wants to spend the least possible amount of money on coffee?
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5 Mathematics of Finance

In this chapter we will see how we can compute interests, payments on a mortgage, or
which type of loan is more beneficial depending on our resources.

5.1 Compound Interest

Definition 5.1. Given a certain amount P , the so called original principal, an
interest rate of r per year, and an amount t of years, the interest that is computed
over the original principal only is called simple interest.

Proposition 5.2. The accumulated amount A obtained by the simple interest of an
original principal P at an interest rate of r per year for t years is:

A = P (1 + rt).

Example 5.3. An amount of $2000 is invested in a 10 year trust fund that pays 6%
annual simple interest. What is the total amount of the trust fund at the end of 10
years?
Solution: The total amount of the trust fund at the end of 10 years is:

2000 + I = 2000 + 2000 · 0.06 · 10 = 3200.

Definition 5.4. Given a certain amount of money P , the so called original princi-
pal, an interest rate of r per year, the so called nominal rate,compounded m times
per year, and an amount t of years, the interest that is periodically added to the
principal and itself also earns interest at the same rate is called compound interest.

Proposition 5.5. The accumulated amount A obtained by the compound interest
of an original principal P at an interest rate of r per year, compounded m times a
year, for t years is:

A = P
(

1 +
r

m

)mt
.

Proposition 5.6. The accumulated amount A obtained by the compound interest of
an original principal P at an interest rate of r per year, compounded continuously,
for t years is:

A = Pert.
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Example 5.7. An account that pays 7.2% has $5000. The money remains there for 9
years. How much interest is earned if it is compounded daily? And if it is compounded
continuously?
Solution: If the interest is compounded daily the total amount in the account at the
end of 9 years is:

5000

(
1 +

0.072

365

)365·9
≈ 9557.96.

If the interest is compounded continuously the total amount in the account at the end
of 9 years is:

5000e0.072·9 ≈ 9558.57.

Example 5.8. Find the accumulated amount after 3 years of $1000 invested at 8% per
year compounded:

1. Annually,

2. Semiannually,

3. Quarterly,

4. Monthly,

5. Daily.

Solution: We have:

1. A = 1000
(
1 + 0.08

1

)1·3 ≈ 1259.71,

2. A = 1000
(
1 + 0.08

2

)2·3 ≈ 1265.32,

3. A = 1000
(
1 + 0.08

4

)4·3 ≈ 1268.24,

4. A = 1000
(
1 + 0.08

12

)12·3 ≈ 1270.24,

5. A = 1000
(
1 + 0.08

365

)365·3 ≈ 1271.22.

Example 5.9. How much money should be deposited in a bank paying interest at the
rate of 6% per year compounded monthly so that at the end of 3 years the accumulated
amount will be $20000?
Solution: We have:

20000 = P

(
1 +

0.06

12

)12·3

so P = 16712.9 dollars.

Example 5.10. We are given two investment options:
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1. Purchase a vinyl that matures in 12 years and pays interest upon maturity at a
rate of 10% per year compounded daily.

2. Purchase a zero coupon vinyl that will triple her investment in the same period.

Which will optimize our investment?
Solution: Setting P any initial payment that we had to make to purchase the vinyl,
the first option gives us:

A1 = P

(
1 +

0.1

365

)365·12
≈ P · 3.32

while the second option gives us:
A2 = P · 3

and thus since A1 ≥ A2 the first option is a better investment.

Definition 5.11. The effective rate reff is the simple interest rate that would pro-
duce the same accumulated amount in a year that the nominal rate r would produce
when compounded m times in a year.

Proposition 5.12. The effective rate reff given by a nominal rate r compounded
m times in a year is:

reff =
(

1 +
r

m

)m
− 1.

Example 5.13. Find the effective rate corresponding to a nominal rate of 8% per year
compounded:

1. Annually,

2. Semiannually,

3. Quarterly,

4. Monthly,

5. Daily.

Solution: We have:

1. reff =
(
1 + 0.08

1

)1 − 1 = 0.08,

2. reff =
(
1 + 0.08

2

)2 − 1 = 0.0816,

3. reff =
(
1 + 0.08

4

)4 − 1 ≈ 0.0824,
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4. reff =
(
1 + 0.08

12

)12 − 1 ≈ 0.083,

5. reff =
(
1 + 0.08

365

)365 − 1 ≈ 0.0833.

Example 5.14. Wells Fargo advertises a nominal rate of 7.1% compounded semiannu-
ally. Chase advertises a nominal rate of 7% compounded daily. What are the effective
yields? In which bank should one deposit their money?
Solution: The effective yield offered by Wells Fargo is (1 + 0.071/2)2−1 ≈ 0.0723. The
effective yield offered by Chase is (1+0.07/365)365−1 ≈ 0.0725. We should then deposit
our money in Chase.

5.2 Annuities

Definition 5.15. An annuity is a sequence of payments made at regular time in-
tervals. The time period in which the payments are made is called the term of the
annuity. The future value of the annuity is the total amount that was paid and
the interest that those payments incurred in, at the end of the term of the annuity.
The present value of the annuity is the total (that is, without regular payments)
amount that, when invested at the same interest and for the same period of time as
the annuity, yields the same accumulated value.

We will consider annuities in which the time intervals are fixed, the payments are
made at the end of each payment period, and the payment period coincides with the
interest conversion period. That is, our annuities are subject to the following conditions:

1. The terms are given by fixed time intervals.

2. The periodic payments are equal in size.

3. The payments are made at the end of the payment period.

4. The payment periods coincide with the interest conversion periods.

Proposition 5.16. The future value of an annuity, called S, of n payments of R
dollars each, paid at the end of each investment period into an account that earns
interest at the rate of i per period, is:

S = R

(
(1 + i)n − 1

i

)
.

Using that i = r/m and n = mt is the conversion between interest rate per period
and nominal annual rate, when taking into account how many times a year and for how
many years the interest is compounded, we also have:
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Proposition 5.17. The future value of an annuity, called S, of payments of R
dollars each, paid at the end of each investment period into an account that earns a
nominal annual rate of r compounded m times a year, for t years, is:

S = R

((
1 + r

m

)mt − 1

r/m

)
.

Example 5.18. Find the amount of an ordinary annuity of 12 monthly payments of
$100 that earn interest at 12% per year compounded monthly.
Solution: We have r = 0.12, m = 12, t = 1, R = 100, and so:

S =
100 · ((1.01)12 − 1)

0.01
≈ 1268.25.

Example 5.19. Sally deposits $100 per month into an annuity at a nominal rate of 5%
per year compounded monthly, for 9 years. Find the future value of the annuity and the
amount of interest earned during this investment period.
Solution: We have r = 0.05, m = 12, t = 9, R = 100, and so:

S =
100 · ((1 + 0.05/12)9·12 − 1)

0.05/12
≈ 13604.32.

This means that the interest earned in dollars, which is the final value in the account
minus the total amount paid into the account, is:

S −R ·m · t =≈ 13604.32− 108 · 100 = 2804.32.

Example 5.20. Jennifer wants to save $20000 for a down payment on a car after she
graduates from college. She opens an annuity at a nominal rate of 2.25% per year
compounded quarterly, for 5 years. How much does she need to pay quarterly to obtain
the desired result?
Solution: We have r = 0.025, m = 4, t = 5, S = 20000, and so:

20000 =
R · ((1 + 0.025/4)5·4 − 1)

0.025/4
= 21.2332R

and thus R ≈ 941.92 dollars.

Example 5.21. Chelsea’s parents want to put money into a college fund so she can
better afford the cost of college. Her family figures they can afford to save $300 per
month. They find that the Bank of America offers a nominal rate of 4.05% interest per
year compounded monthly. How many years do they need to plan to invest the money
to have $40000 in the account when Chelsea goes to college?
Solution: We have r = 0.0405, m = 12, R = 300, S = 40000, and so:

40000 =
300 · ((1 + 0.0405/12)t·12 − 1)

0.0405/12
= 88888.9 · (1.0033812t − 1)

and thus t ≈ 9.19 years.
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Proposition 5.22. The present value of an annuity, called P , of n payments of R
dollars each, paid at the end of each investment period into an account that earns
interest at the rate of i per period, is:

P = R

(
1− (1 + i)−n

i

)
.

Using again that i = r/m and n = mt, we also have:

Proposition 5.23. The present value of an annuity, called P , of payments of R
dollars each, paid at the end of each investment period into an account that earns a
nominal annual rate of r compounded m times a year, for t years, is:

P = R

(
1−

(
1 + r

m

)−mt

r/m

)
.

Example 5.24. An annuity is taken for 24 payments of $100 each, made monthly and
earning an annual interest of 9% per year, compounded monthly. What is the present
value of the annuity?
Solution: We have r = 0.09, m = 12, R = 100, t = 24/12 = 2, and so:

P =
100 · (1− (1 + 0.09/12)−2·12)

0.09/12
≈ 2188.91

is the present value of the annuity.

Example 5.25. A student owes $6000 on a credit card that charges 21% annual interest
compounded monthly on the unpaid balance. If the student makes monthly payments
of $120, how long will it take to pay it off? How much interest is paid in total? How
much do you owe after 5 years?
Solution: We have r = 0.21, m = 12, R = 120, P = 6000, and so:

6000 =
120 · (1− (1 + 0.21/12)−t·12)

0.21/12
= 6857.14 · (1− 1.0175−12t)

and thus it will take the student t ≈ 9.9885 ≈ 10 years. The student would have made
mt = 120 payments of $120 each, so it would have paid 120 · 120 = 14400 dollars, for a
debt of 6000 dollars, and thus the student paid 14400− 6000 = 8400 dollars in interest.

Moreover, after 5 years, we have r = 0.21, m = 12, R = 120, t = 5, and so:

P =
120 · (1− (1 + 0.21/12)−5·12)

0.21/12
≈ 4435.78

the student still owes $4435.78 after 5 years of making payments.
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Example 5.26. An employee announces to the company that employs him that they
will retire in one year. The pension plan requires that the company pays the employee
$40000 in a lump sum at the end of one year, and every year thereafter until their death.
The company makes the assumption that the employee will live to receive 25 payments.
Interest rates are 5% per year compounded annually. How much money should the
company set aside now to ensure that they can meet their pension obligations to the
employee?
Solution: We have r = 0.05, m = 1, t = 25, R = 40000, and so:

P =
40000 · (1− (1 + 0.05/1)−25·1)

0.05/1
≈ 563757.78

in dollars is how much the company should set aside.

Example 5.27. After making a down payment of $2000 for a vehicle, Murphy paid $200
per month for 36 months with an interest rate of 12% per year compounded monthly on
the unpaid balance. What was the original cost of the car? How much did Murphy pay
in interest charges?
Solution: We have r = 0.12, m = 12, t = 36/12 = 3 R = 200, and so the amount that
Murphy paid after the down payment is:

P =
200 · (1− (1 + 0.12/12)−12·3)

0.12/12
≈ 6021.5

dollars. Hence the original cost of the vehicle is 6021.5 + 2000 = 8021.5. Since Murphy
paid a total of mtR = 12 · 3 · 200 = 7200 the amount of interest he paid is mtR − P =
12 · 3 · 200− 6021.5 = 1178.5 dollars.

5.3 Amortization and Sinking Funds

We can use the concept of present value of an annuity to analyze mortgages and financing
of houses and cars, among others.

Example 5.28. A family wishes to purchase a house that costs $130000. They make a
down payment of $20000 and finance the remainder for 30 years at 5.1% annual interest
compounded monthly on the unpaid balance.

1. What are the monthly payments they need to make?

2. How much interest do they pay in total?

3. How much of the first payment is paid toward interest and how much is paid
towards the current principal of the account?

4. How much do they still owe the bank after the first payment?

5. Suppose they instead finance the house for 15 years. What is the monthly payment?
How much interest do they pay in total? How does the interest paid on a 15 year
mortgage compare to a 30 year mortgage?
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Solution: We have r = 0.051, m = 12, t = 30 P = 130000− 20000 = 110000.

1. We have:

110000 =
R · (1− (1 + 0.051/12)−30·12)

0.051/12
= 184.179R

and thus they need to make monthly payments of R ≈ 597.24 dollars.

2. The total amount that they pay is mtR = 12 · 30 · 597.24 = 215006.4 and thus the
interest they paid is 215006.4− 110000 = 105006.4 dollars.

3. Since they owe the bank $110000 on the first payment, and that first payment the
percentage of this that is interest is 0.051/12, the interest they owe on the first
payment is:

110000 · 0.051

12
= 467.5.

Hence they pay 467.5 dollars towards the interest and 597.24 − 467.5 = 129.74
dollars towards the principal, that is, the house.

4. They still owe the bank 110000−129.74 = 109870.26 dollars after the first payment.

Another way to see these last two points is that the total they owe to the bank
once counted the interest is 110000 + 467.5 = 110467.5 dollars. Since they make
payments of 597.24 dollars, what remains after the first payment is 110467.5 −
597.24 = 109870.26 dollars. Hence they only contributed 110000 − 109870.26 =
129.74 dollars towards the principal, and they contributed 597.24−129.74 = 467.5
dollars towards the interest.

5. It they instead finance the house for 15 years, we have r = 0.051, m = 12, t = 15
P = 130000− 20000 = 110000. The monthly payment is then:

110000 =
R · (1− (1 + 0.051/12)−15·12)

0.051/12
= 125.626R

and thus they need to make monthly payments of R ≈ 875.61 dollars. They pay
a total of mtR = 12 · 15 · 875.61 = 157609.8 and thus the interest they paid is
157609.8 − 110000 = 47609.8 dollars. This means that the interest paid on a 30
year mortgage is 105006.4− 47609.8 = 57396.6 dollars more than the interest paid
on a 15 year mortgage.

Example 5.29. A student wishes to borrow $20000 from a bank to purchase a car.
The bank charges an annual interest rate of 4.2% compounded monthly, and the student
finances the loan for 5 years. How much must the student pay per month so that the
loan will be paid off after 5 years? How much must the student pay per month so that
the loan will be paid off after 4 years? How much must the student pay per month so
that the loan will be paid off after 6 years? Find the total interest paid on the loan for
each of the different loan periods.
Solution: We have r = 0.042, m = 12, P = 20000. We then have that:
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1. if t = 5 then:

20000 =
R · (1− (1 + 0.042/12)−12·5)

0.042/12
= 54.0339R

and thus the student needs to make monthly payments of R ≈ 370.14 dollars. The
interest paid in dollars is:

mtR− P = 12 · 5 · 370.14− 20000 = 2208.4.

2. if t = 4 then:

20000 =
R · (1− (1 + 0.042/12)−12·4)

0.042/12
= 44.1138R

and thus the student needs to make monthly payments of R ≈ 453.37 dollars. The
interest paid in dollars is:

mtR− P = 12 · 4 · 453.37− 20000 = 1761.76.

3. if t = 6 then:

20000 =
R · (1− (1 + 0.042/12)−12·6)

0.042/12
= 63.5466R

and thus the student needs to make monthly payments of R ≈ 314.73 dollars. The
interest paid in dollars is:

mtR− P = 12 · 6 · 314.73− 20000 = 2660.56.

Definition 5.30. In the context of a loan being amortized, an amortization table
is a table showing for each payment period how much is being paid, how much of
each payment is interest, how much of each payment is paid towards the principal,
and how much is the outstanding principal.

Example 5.31. A student borrows $3000 from a bank at an annual interest rate of 12%
compounded quarterly for 2 years. Find the monthly payment and then complete a table
showing for each quarter much is being paid, how much of each payment is interest, how
much of each payment is paid towards the principal, and how much is the outstanding
principal. That is, find an amortization table of the transaction.
Solution: We have r = 0.12, m = 4, t = 2, P = 3000. We then have that:

3000 =
R · (1− (1 + 0.12/4)−4·2)

0.12/4
= 7.01969R

and thus the student needs to make quarterly payments of R ≈ 427.37 dollars. An
amortization table in dollars is:
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Period Payment Interest Toward principal Outstanding principal

0 3000
1 427.37 90 337.37 2662.63
2 427.37 79.88 347.49 2315.14
3 427.37 69.45 357.92 1957.22
4 427.37 58.72 368.65 1588.57
5 427.37 47.66 379.71 1208.86
6 427.37 36.27 391.1 817.76
7 427.37 24.53 402.84 414.92
8 427.37 12.45 414.92 0

Definition 5.32. In the context of an annuity, the equity that the taker of the
annuity has is the amount, including interest, that they have accumulated with their
deposits. In the context of a loan being amortized, the equity that the taker of the
loan has is the amount that they have contributed to the payment of the original
principal.

Example 5.33. A student wishes to purchase a house that costs $130000. For this,
they make a down payment of $20000, and finance the remainder $110000 for 30 years
at 5.1% annual interest compounded monthly. How much is the monthly payment on
this mortgage? Find an amortization table. How much equity will the student have
after 10 years? How much equity will the student have after 10 years?
Solution: We have r = 0.051, m = 12, t = 30, P = 110000, and thus we have:

110000 =
R · (1− (1 + 0.051/12)−30·12)

0.051/12
= 184.179R

and thus the student needs to make monthly payments of R ≈ 597.24 dollars. We will
use the abbreviations PMT for payment, PMTL for the number of payments left, I
for interest, TP for the amount going toward the principal, OP for the outstanding
principal, and E for the equity. The first 7 rows of an amortization table in dollars are
then:

Period PMTL PMT I TP OP E

0 360 110000 20000
1 359 597.24 467.5 129.74 109870.26 20129.74
2 358 597.24 466.95 130.29 109739.97 20260.03
3 357 597.24 466.39 130.85 109609.12 20390.88
4 356 597.24 465.84 131.4 109477.12 20522.28
5 355 597.24 463.28 131.96 109345.76 20654.24
6 354 597.24 464.72 132.52 109213.24 20786.76

To compute the equity after 10 years, we can compute how much outstanding pay-
ment remains (that is, how much do we still owe the bank) after 10 years. Since we still
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have 20 years till we pay off the loan, the outstanding payment is the present value of
an annuity with r = 0.051, m = 12, t = 20, R = 597.24, that is:

P =
597.24 · (1− (1 + 0.051/12)−20·12)

0.051/12
≈ 89744.07

dollars. This means that we have paid 110000 − 89744.07 = 20255.93 dollars from the
loan. Hence our equity, which is how much have we paid (including the down payment),
is 20255.93 + 20000 = 40255.93 dollars.

To compute the equity after 18 years, we can compute how much outstanding pay-
ment remains (that is, how much do we still owe the bank) after 18 years. Since we still
have 12 years till we pay off the loan, the outstanding payment is the present value of
an annuity with r = 0.051, m = 12, t = 12, R = 597.24, that is:

P =
597.24 · (1− (1 + 0.051/12)−12·12)

0.051/12
≈ 64225.23

dollars. This means that we have paid 110000 − 64225.23 = 45774.77 dollars from the
loan. Hence our equity, which is how much have we paid (including the down payment),
is 45774.77 + 20000 = 65774.77 dollars.

Definition 5.34. A sinking fund is an account that is set up for a specific purpose
at some future date.

Example 5.35. The owner of Zara has decided to set up a sinking fund for the purpose
of expanding in Latin America in two years’ time. It is expected that the expansion
will cost 30000 million dollars. If the fund earns 10% interest per year, compounded
quarterly, determine the size of each (equal) quarterly installment that Amancio Ortega
(Zara’s owner) should pay into the fund. Verify the result by computing a table showing
for each payment period how much is being deposited, how much interest the fund is
earning, how much it is being added to the fund, and how much is being accumulated
in the fund.
Solution: We have r = 0.10, m = 4, t = 2, S = 30000. We then have that:

30000 =
R · ((1 + 0.10/4)4·2 − 1)

0.10/4
= 8.73612R

and thus Amancio Ortega needs to make quarterly payments of R ≈ 3434.02 million
dollars. The desired table in millions of dollars is:

Period Deposited Interest earned Addition to fund Accumulated in fund

1 3434.02 3434.02 3434.02
2 3434.02 85.85 3519.87 6953.89
3 3434.02 173.85 3607.87 10561.76
4 3434.02 264.04 3698.06 14259.82
5 3434.02 356.50 3790.52 18050.34
6 3434.02 451.26 3885.28 21935.62
7 3434.02 548.39 3982.41 25918.03
8 3434.02 697.95 4081.97 30000
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Example 5.36. The Umbrella Corporation wishes to set up a sinking fund to replace a
current laboratory machine. It is estimated that the machine will need to be replaced in
10 years and will cost 100000 million dollars. How much per quarter should be deposited
into an account with an annual interest rate of 8%, compounded quarterly, to meet this
future obligation? What will be the total amount of the payments? How much will
be the interest earned? If only four years after making the sinking fund the Umbrella
Corporation decides to use the accumulated money (that is, their equity) for another
purpose, determine how much money they have available.
Solution: We have r = 0.08, m = 4, t = 10, S = 100000. We then have that:

100000 =
R · ((1 + 0.08/4)4·10 − 1)

0.08/4
= 60.402R

and thus the Umbrella Corporation needs to make quarterly payments of R ≈ 1655.57
million dollars. They deposit a total of mtR = 4 · 10 · 1655.57 = 66222.8 million dollars,
meaning that they earned 100000− 66222.8 = 33777.2 million dollars from interest.

The equity will be given by the final accumulated value of an annuity with r = 0.08,
m = 4, t = 4, R = 1655.57. Hence they have:

S =
1655.57 · ((1 + 0.08/4)4·4 − 1)

0.08/4
≈ 30858.64

million dollars available.
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6 Sets and Counting

6.1 Sets and Set Operations

In daily life we often deal with collections of objects, such as our belongings, the ap-
pointments in our schedule, or the available gas stations at a given time of the day.

Definition 6.1. A set is a well defined unordered collection of objects. Namely,
given a set and any object, we must be able to determine whether or not the object
belongs to the set. The objects forming a set are called the elements of the set.

There are two main ways of presenting a set. The roster notation gives a set by
listing all of its elements. The set-builder notation gives a set by describing the property
or properties that an object must satisfy to be in the set.

Example 6.2. Give the roster notation and the set-builder notation of the set formed
by all the letters of the English alphabet.
Solution: The roster notation is:

A = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}.

The set-builder notation is:

A = {x|x is a letter of the English alphabet}.

Definition 6.3. Consider a set A and an element a. If a is an element of the set
A, we write a ∈ A and say that a belongs to A or a is in A. If a is not an element
of the set A, we write a /∈ A and say that a does not belongs to A or a is not in A.

Example 6.4. Consider A = {1, 2, 3, 4, 5}. Name an element that belongs to A and an
element that does not belong to A.
Solution: We have that 3 ∈ A, and also 6 /∈ A.

Definition 6.5. Consider two sets A and B. We say that they are equal, and we
write A = B, whenever they have exactly the same elements.

Example 6.6. Consider:

A = {a, e, i, o, u},
B = {u, o, i, e, a},
C = {b, c, d, f, g, h, j, k, l,m, n, p, q, r, s, t, v, w, x, y, z}.

Determine which sets are equal, which are different, and why.
Solution: We have that A = B because every element of A is in B, and every element
of B is in A. Since we have a ∈ A, a ∈ B, but a /∈ C, we have A 6= C and B 6= C.
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Definition 6.7. Consider two sets A and B. We say that A is a subset of B, and
we write A ⊆ B, whenever every element of A is also an element of B. If A is
a strict subset of B, that is if A is a subset of B that is not equal to B, we write
A ( B and we say that A is a proper subset of B. If A is not a subset of B, we
write A * B.

Example 6.8. Consider:

A = {a, e, i, o, u},
B = {b, c, d, f, g, h, j, k, l,m, n, p, q, r, s, t, v, w, x, y, z},
C = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}.

Determine which sets are equal, which are different, what sets are included in others,
and why.
Solution: We have a ∈ A but a /∈ B, so A 6= B and A * B. We also have b ∈ B but
b /∈ A, so we have B * A. We have that every element in A is also in C, but b ∈ C while
b /∈ A, so A 6= C and A ( C and C * A. We have that every element in B is also in C,
but a ∈ C while a /∈ B, so B 6= C and B ( C and C * B.

Proposition 6.9. Let A and B be two sets. Then A = B if and only if A ⊆ B and
B ⊆ A.

Definition 6.10. The set {} containing no elements is called the empty set, and
we denote it by ∅.

Example 6.11. List all subsets of A = {1, 2, 3}.
Solution: We can determine the subsets in terms of how many elements they have.
There is one subset of A containing no elements: the empty set ∅. There are three
sets containing one element: {1}, {2}, and {3}. There are three subsets containing
two elements: {1, 2}, {2, 3}, and {1, 3}. There is one subset containing three elements:
{1, 2, 3}. Therefore the subsets of A are:

∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}.

Definition 6.12. The universal set of a particular setting is the set containing all
the elements of interest in that particular setting. We denote it U .

Example 6.13. In the setting of determining the ratio of female to male students at
Texas A&M University, what is the universal set?
Solution: Since the elements of interest are the female and male students of the Uni-
versity, the universal set is the set consisting of all female and male students of the
University.

61



Example 6.14. In the setting of determining the ratio of female to male students within
Mays Business School, what is the universal set?
Solution: Since the elements of interest are the female and male students within Mays
Business School, the universal set is the set consisting of all female and male students
within Mays Business School.

Definition 6.15. A Venn diagram is a visual representation of sets. We represent
the universal set U by a rectangle, containing regions which are the other sets of
interest.

Example 6.16. Use Venn diagrams to illustrate:

1. The sets A and B are equal.

2. The set A is a proper subset of the set B.

3. The sets A and B are not subsets of each other.

Solution:

1. For A = B within U we have:

A, B

U

2. For A ( B within U we have:

B

A

U
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3. For A 6= B within U we have:

AB

U

Given any number of sets, there are certain operations that we can perform. This
is simply a combination of sets to yield another set. We will assume that all such sets
under which we are performing operations are subsets of a global universal set U .

Definition 6.17. Let A and B be two sets. The union of A and B, written A∪B,
is the set of all elements that belong to either A or B or both:

A ∪B = {x|x ∈ A, or x ∈ B, or both}.

Example 6.18. What is the union of A = {a, b, c} and B = {a, c, d}?
Solution: We need to include all the elements that are just in A, that is b, the elements
that are just in B, that is d, and the elements that are both in A and B, that is a and
c. We then have A ∪B = {a, b, c, d}.

This can also be visualized with a Venn diagram:

AB

d a, c b

U

Definition 6.19. Let A and B be two sets. The intersection of A and B, written
A ∩B, is the set of all elements that belong to both A and B:

A ∩B = {x|x ∈ A and x ∈ B}.
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If two sets have no elements in common, they are said to be disjoint.

Example 6.20. What is the intersection of A = {a, b, c} and B = {a, c, d}?
Solution: We need to include all the elements that are in both A and B, that is a and
c. We then have A ∩B = {a, c}.

This can also be visualized with a Venn diagram:

AB

d a, c b

U

Example 6.21. What is the intersection of A = {a, b, c} and B = {1, 2, 3}?
Solution: We need to include all the elements that are in both A and B. However, A
and B have no elements in common, they are disjoint. We then have A ∩B = {} = ∅.

This can also be visualized with a Venn diagram:

AB

1, 2, 3 a, b, c

U

Definition 6.22. Let A be a sets. The complement of A, written Ac, is the set of
all elements in U that do not belong to A:

Ac = {x|x ∈ U and x /∈ A}.

Example 6.23. Let U = {1, 2, 3, 4, 5, 6, 7, 8} and A = {2, 4, 6, 8}. What is the comple-
ment of A?
Solution: We need to include all the elements that are in U bot not in A. Then
Ac = {1, 3, 5, 7}.

This can also be visualized with a Venn diagram:
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A

2, 4, 6, 8 1, 3, 5, 7

U

Proposition 6.24. Given A, B, C three sets, we have that unions and intersections
are commutative:

A ∪B = B ∪A
A ∩B = B ∩A

Proposition 6.25. Given A, B two sets, we have that unions and intersections are
associative:

A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C

Proposition 6.26. Given A, B, C three sets, we have that unions and intersections
are distributive with respect to each other:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Theorem 6.27. Given A, B two sets, we have:

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

which are called De Morgan’s Laws.

Example 6.28. Using Venn diagrams, show that (A ∪B)c = Ac ∪Bc.
Solution: The general Venn diagram of A ∪B is:
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AB

U

so the general Venn diagram of (A ∪B)c is:

AB

U

The general Venn diagram of Ac is

A

U

and the general Venn diagram of Bc is:

B

U
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so the general Venn diagram of Ac ∩Bc is their intersection:

AB

U

which is exactly the same diagram obtained before.

Example 6.29. Let U = {a, e, i, o, u, v, w, x, y, z}, A = {a, e, i, o, u}, B = {u, v, w, x}.
Verify by direct computation that (A ∪B)c = Ac ∩Bc.
Solution: We have A ∪ B = {a, e, i, o, u, v, w, x}, so (A ∪ B)c = {y, z}. We have
Ac = {v, w, x, y, z} and Bc = {a, e, i, o, u, y, z}, so Ac ∩Bc = {y, z}.

Example 6.30. Let U denote the set of all cars in Allen Hoda’s dealership. Consider
the following sets:

1. A = {x ∈ U |x has automatic transmission},

2. B = {x ∈ U |x has air conditioning},

3. C = {x ∈ U |x has sunroof}.

Find an expression in terms of A, B, and C for each of the following sets:

1. The set of cars with at least one of the given options.

2. The set of cars with exactly one of the given options.

3. The set of cars with automatic transmission and sunroof but no air conditioning.

Solution: We have:

1. A ∪B ∪ C.

2. (A ∩Bc ∩ Cc) ∪ (B ∩Ac ∩Bc) ∪ (C ∩Ac ∩Bc).

3. A ∩ C ∩Bc.

6.2 The Number of Elements in a Finite Set

Knowing how many elements a set has is useful and desirable.
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Definition 6.31. Let A be a set. We say that A is a finite set if it has finitely
many elements. We denote by n(A) the number of elements in A, and we call it the
cardinality of A.

Example 6.32. Determine the number of elements of the following sets:

A = {x|x is a letter of the English alphabet},
B = {x|x is a state of the United States of America},
C = {x|x is a college of Texas A&M University}.

Solution: We have n(A) = 26, n(B) = 50, and n(C) = 18.

Example 6.33. Let A = {a, b, c, d, e}, B = {d, e, f, g, h}. Determine the number of
elements in their union.
Solution: We have n(A ∪B) = 8.

Proposition 6.34. Let A1, A2 be two finite sets, then:

n(A1 ∪A2) = n(A1) + n(A2)− n(A1 ∩A2).

Proposition 6.35 (Counting Principle). Let A1, . . . , An be finite sets, then:

n(A1 ∪ · · · ∪An) =
n∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤n
n(Ai1 ∩ · · · ∩Aij )

The case n = 2 above is key in understanding the counting principle. Another specific
case that is very useful is the case n = 3:

n(A1 ∪A2 ∪A3) = n(A1) + n(A2) + n(A3)

− n(A1 ∩A2)− n(A1 ∩A3)− n(A2 ∩A3) + n(A1 ∩A2 ∩A3).

Example 6.36. Let A = {1, 2, 3, 4}, B = {2, 3, 4, 5, 6}, and C = {4, 5, 6, 7, 8}. Verify
the counting principle.
Solution: We have:

n(A ∪B ∪ C) = 8

and since n(A) = 4, n(B) = 5, n(C) = 5, n(A ∩ B) = 3, n(A ∩ C) = 1, n(B ∩ C) = 3,
n(A ∩B ∩ C) = 1 we have:

n(A1) + n(A2) + n(A3)− n(A1 ∩A2)− n(A1 ∩A3)− n(A2 ∩A3)

+ n(A1 ∩A2 ∩A3) = 4 + 5 + 5− 3− 1− 3 + 1 = 8.
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Example 6.37. The Starbucks at Evans Library surveyed 100 customers. They found
that 70 customers use sugar, 60 customers use cream, and 50 use both sugar and cream.
How many consumers surveyed took sugar or cream? Make a Venn diagram conveying
the situation.
Solution: Let A and B be the consumers using sugar and cream, respectively. We have
that n(A ∪B) = 80 consumers take sugar or cream.

BA

20 50 10

20
U

Example 6.38. Let A and B be subsets of a universal set U . Suppose that n(U) = 100,
n(A) = 60, n(B) = 40, and n(A ∩ B) = 20. Compute n(A ∪ B), n(A ∩Bc), n(Ac ∩ B).
Make a Venn diagram conveying the situation.
Solution: We have that n(A ∪B) = 80, n(A ∩Bc) = 40, n(Ac ∩B) = 20.

BA

40 20 20

20
U

Example 6.39. The company Johnson & Johnson advertises their products in three
magazines: The New Yorker, The Old Yorker, and The Ancient Yorker. A survey of 500
customers revealed that:

1. 180 knew their products from The New Yorker,

2. 200 knew their products from The Old Yorker,

3. 192 knew their products from The Ancient Yorker,

4. 84 knew their products from The New Yorker and The Old Yorker,

5. 52 knew their products from The New Yorker and The Ancient Yorker,

6. 64 knew their products from The Old Yorker and The Ancient Yorker,
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7. 38 knew their products from The New Yorker, The Old Yorker, and The Ancient
Yorker.

How many of the customers saw the manufacturer’s advertisement in at least one maga-
zine? How many of the customers saw the manufacturer’s advertisement in exactly one
magazine? How many of the customers saw the manufacturer’s advertisement in at least
two magazines? How many of the customers saw the manufacturer’s advertisement in
exactly two magazines? Make a Venn diagram conveying the situation.
Solution: Let N , O, and A be the customers knowing the products from The New
Yorker, The Old Yorker, and The Ancient Yorker respectively. The customers who
know the products from at least one magazine are n(N ∪O ∪A) = 410. The customers
who know the products from exactly one magazine are n(N ∩ Oc ∩ Ac) + n(N c ∩ O ∩
Ac) + n(N c ∩ Oc ∩ A) = 286. The customers who know the products from at least two
magazines are n(N ∩O ∩Ac) + n(N ∩Oc ∩A) + n(N c ∩O ∩A) + n(N ∩O ∩A) = 124.
The customers who know the products from exactly two magazines are n(N ∩O∩Ac) +
n(N ∩Oc ∩A) + n(N c ∩O ∩A) + n(N ∩O ∩A) = 86.

ON

A

46

38

2614

114

9082

90

U

Example 6.40. In a survey of 300 investors regarding subscriptions to the New York
Times, the Wall Street Journal, and USA Today, the following were found:

1. 122 subscribe to the NYT,

2. 150 subscribe to the WSJ,

3. 62 subscribe to the UST,
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4. 38 subscribe to the NYT and the WSJ,

5. 28 subscribe to the NYT and the UST,

6. 20 subscribe to the WSJ and the UST,

7. 36 do not subscribe to any of these three newspapers.

How many of the investors surveyed subscribe to all three newspapers? How many of the
investors subscribe to only one of these newspapers? Make a Venn diagram conveying
the situation.
Solution: There are 16 surveyed investors subscribed to all three newspapers. There
are 210 surveyed investors subscribed to only one newspaper.

WSJNY T

UST

22

16

412

30

10872

36

U

6.3 The Multiplication Principle

There are other tools that we can use when determining the cardinality of a set.

Proposition 6.41 (Multiplication Principle). If a set S = {s1, . . . , sn} can be con-
structed in such a way that for each 1 ≤ i ≤ n there are mi choices for si, then the
number of distinct sets which can be constructed is m1 · · ·mn.

Example 6.42. The dealership Allen Honda needs to transfer cars to Houston. For
this they employ an eighteen wheeler that can hold three vehicles at a time, but the
vehicles cannot be of the same color. Determine the number of distinct shipments
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possible knowing that there are seven red cars, five green cards, and nine blue cars on
the dealership that need to be transferred.
Solution: There are 315 possible shipments.

Example 6.43. A coin is tossed three times, and the sequence of heads and tails is
recorded. What is the possible number of outcomes of the sequences? You may use a
tree diagram.
Solution: There are 8 possible sequences.

6.4 Permutations and Combinations

We will now apply the multiplication principle to solve counting problems. We start by
considering setups where the order of the elements matters.

Definition 6.44. Let S be a set containing distinct objects, a permutation of the
set is an arrangement of these objects in a concrete order.

Example 6.45. Let A = {a, b, c}. Find the number of permutations of A. List all
permutations of A using a tree diagram.
Solution: There are 6 permutations. We can list them as:

•

c

a b

b a

b

a c

c a

a

c b

b c

Example 6.46. Find the number of ways the Texas A&M starting baseball team (con-
sisting of nine players) can arrange themselves in a line for a group picture.
Solution: There are 362880 ways.
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Definition 6.47. Given n ∈ N, we denote by n! the factorial of n. We set 0! = 1
and for n > 0:

n! = n · (n− 1) · · · · · 2 · 1.

Proposition 6.48. If we take n elements from n elements, the possible number of
permutations is n!.

Proposition 6.49. If we take r elements from n elements, the possible number of
permutations is:

n!

(n− r)!
.

Definition 6.50. Given n, r ∈ N with r ≤ n, we call the permutations of n objects
taken r at a time to the number:

P (n, r) =
n!

(n− r)!
.

Example 6.51. Find the number of ways the Texas A&M Student Senate can choose a
chairman, a vice-president, a secretary, and a treasurer, if there are 120 eligible members.
Solution: There are 197149680 ways.

Theorem 6.52. Given a set of n objects, suppose where we have r different types
of objects, and of each type we have ni, 1 ≤ i ≤ r many, so that n1 + · · ·+ nr = n.
Then the number of permutations of these n objects taken n at a time is:

n!

n1! · · ·nr!
.

Example 6.53. Find the number of anagrams that can be formed from the word MIS-
SISSIPPI.
Solution: There are 34650 anagrams.

Example 6.54. The Standard in College Station received 12 resident complaints last
month. In how many ways can the complaints be addressed by four of the Standard’s
lawyers if each lawyer handles three inquiries?
Solution: There are:

12!

3! · 3! · 3! · 3!
= 369600

ways of addressing them.
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So far we have been interested in arrangements where the order of the elements
matters. However, in many situations the order does not matter.

Definition 6.55. Let S be a set containing distinct objects, a combination of the
set is a selection of these objects without regarding their order.

Proposition 6.56. If we take r elements from n elements, the possible number of
combinations is:

n!

r!(n− r)!
.

Example 6.57. Calculate how many different four digit integers larger than 3000 can
be made from the numbers {1, 1, 3, 5, 8}.
Solution: It is helpful to think about the positions: we can choose among {8, 3, 5} for
the thousands, we can choose among 4 options for the hundreds (any of the not chosen
for thousands), we can choose among 3 options for the tens (any of the not chosen for
thousands nor hundreds), and we can choose among 2 options for the ones (any of the
not chosen for thousands nor hundreds nor tens). We can then make 72 different integers
larger than 3000.

Definition 6.58. Given n, r ∈ N with r ≤ n, we call the combinations of n objects
taken r at a time to the number:

C(n, r) =
n!

r!(n− r)!
.

Example 6.59. A container transporting cars from Allen Honda to Houston holds six
aligned distinct Civic: one red, one green, and four blue. If the blue cars must be stored
next to one another, and the green car must be by the container door, determine the
number of storage arrangements.
Solution: There are 48 arrangements.

Example 6.60. The Houston Symphonic String Quartet is composed of two violinists,
a violist, and a cellist. The eligible members of the Houston Symphony are six violinists,
three violists, and two cellists.

1. In how many ways can the string quartet be formed?

2. In how many ways can the string quartet be formed if one of the violinists is to
be designated as the first violinist, and the other is to be designated as the second
violinist?

Solution:
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1. Since here the order doesn’t matter, there are C(6, 2)C(3, 1)C(2, 1) = 90 ways.

2. Since here the order of the violinists matter, there are P (6, 2)C(3, 1)C(2, 1) = 180
ways.

Example 6.61. The heavy metal band Gloryhammer are planning a Texas tour with
seven performances in Houston, Dallas, Austin, San Antonio, Waco, Round Rock, and
El Paso. In how many ways can they arrange their itinerary if:

1. There are no restrictions.

2. The three performances of Central Texas must be given consecutively.

Solution:

1. Since the order matters, there are P (7, 7) = 5040 ways.

2. Treating the performances of Central Texas as a unit, we have P (5, 5) ways of
arranging the performances. Now we have P (3, 3) ways of arranging the perfor-
mances in Central Texas. Then we have P (5, 5)P (3, 3) = 720 ways.

Example 6.62. The U.N. Security Council consists of 5 permanent members (China,
France, Russia, United Kingdom, United States) and 10 non-permanent members. Any
measure requires nine votes to pass. The permanent members have veto power, that is,
by voting against any decision they automatically block it. In how many ways can a
measure be passed if there are no abstentions?
Solution: Since the permanent members need to vote for the measure, this can be done
in C(5, 5) = 1 way. For the decision to pass, at least 4 of the other members must also
vote for the measure. Thus there are:

C(5, 5)(C(10, 4) +C(10, 5) +C(10, 6) +C(10, 7) +C(10, 8) +C(10, 9) +C(10, 10)) = 848

ways in which the measure can pass.
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7 Probability

We will use probability to tackle problems dealing with issues where an element of
uncertainty or chance is present.

7.1 Experiments, Sample Spaces, and Events

Definition 7.1. An experiment is an activity with observable results. The results
of the experiment are called outcomes.

Tossing a coin and observing on which side it falls, rolling a dice and observing
which of the sides shows up, testing a product from a batch and observing whether it is
defective, are all experiments with possible outcomes.

Definition 7.2. Consider an experiment. We call sample point a possible outcome
of the experiment. We call sample space the set consisting of all possible outcomes
of the experiment. We call event to a subset of a sample space of the experiment.
An event is comprised of elements satisfying a specific experimental condition.

Example 7.3. A pair of six sided die are rolled together, and the face up values are
recorded. Determine what the sample space of this experiment is. Determine the events
Ei that the sum of the face up values is i, for 2 ≤ i ≤ 12. Describe the event of the first
dice having a value of 6 as an intersection of two other events.
Solution: The sample space is given by the entries of the following table:

1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

and thus the following table determines the events Ei for 2 ≤ i ≤ 12:
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Sum Event

2 E2 = {(1, 1)}
3 E3 = {(1, 2), (2, 1)}
4 E4 = {(1, 3), (2, 2), (3, 1)}
5 E5 = {(1, 4), (2, 3), (3, 2), (4, 1)}
6 E6 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
7 E7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
8 E8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
9 E9 = {(3, 6), (4, 5), (5, 4), (6, 3)}
10 E10 = {(4, 6), (5, 5), (6, 4)}
11 E11 = {(5, 6), (6, 5)}
12 E12 = {(6, 6)}

and we can describe the event of the first dice having a value of 6 as the intersection of
the events:

1. A1 the event of the first dice having an even value.

2. A2 the event of the first dice having a value divisible by three.

Definition 7.4. Let S be the sample space of an experiment. A collection A1, A2,
..., An of events is called mutually exclusive if Ai ∩ Aj = ∅ whenever i 6= j. A
collection A1, A2, . . . , An of events is called mutually exhaustive if Ai ∪ Aj = S
whenever i 6= j.

A pair of six sided die are rolled together, and S denotes the sample space of all
possible pairs of face up values. Provide examples of mutually exclusive events, and
examples of mutually exhaustive events.

Example 7.5. A pair of six sided die are rolled together, and the face up values are
recorded. Provide examples of mutually exclusive events. Provide examples of mutually
exhaustive events.
Solution: The events:

1. A1 the event of the first dice having an even value.

2. A2 the event of the first dice having an odd value.

are mutually exclusive. The events:

1. A1 the event of the first dice having an value equal or smaller than 4.

2. A2 the event of the values of both die adding up to 5 or above.

are mutually exhaustive.
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7.2 Definition of Probability

The concept of probability comes from generalizing the expected outcome of experiments.
We thus have two different ideas of probability: the experimental one and the theoretical
one.

Definition 7.6. Consider an experiment repeated n times. The event E occurs
m times. We call the relative frequency of E to the ratio m/n. If the relative
frequency approaches some value when we keep repeating the experiment, we call
this value P (E) the empirical probability.

In this sense, the empirical probability P (E) of an event occurring is a measure of
the proportion of the time that the event E will occur in the long run.

Definition 7.7. Given a sample space S of an experiment and E an event of the
experiment, a probability is a function P : S −→ [0, 1] satisfying P (∅) = 0 and
P (S) = 1. The probability of an event is the sum of the probabilities of all sample
points making up the event.

In this sense, the probability P (E) of an event occurring measures the likelihood of
the event E occurring. Each sample point (that is, outcome) in a sample space (coming
from an experiment) is assigned a probability (that lies between zero and one), and each
event is assigned a probability.

Proposition 7.8. Given a sample space S, an event E consisting of the sample
points s1, . . . , sn, and a probability P : S −→ [0, 1], then P (E) = P (s1)+· · ·+P (sn).

As a consequence, we obtain the important result:

Theorem 7.9. Given a finite sample space S consisting of the sample points s1, . . . , sn,
and a probability P : S −→ [0, 1], then P (S) = P (s1) + · · ·+ P (sn).

Definition 7.10. Let S = {s1, . . . , sn} be a finite sample space. We say that it is a
uniform sample space if P (si) = 1/n for all 1 ≤ i ≤ n.

Example 7.11. An ice chest at a Texas A&M versus Alabama tailgate contains three
brands of soda, each with a regular and diet option. A thirsty tailgater reaches into the
chest and selects a drink according to the following table:

Coke Dr. Pepper Pepsi

Regular 0.05 0.15 0.23
Diet 0.10 0.17 0.30
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Find the probabilities of the following events:

1. P (regular Dr. Pepper),

2. P (Coke),

3. P (diet drink),

4. P (not Dr. Pepper),

5. P ({regular Pepsi} ∪ {diet Dr. Pepper}).

Solution: We have:

1. P (regular Dr. Pepper) = 0.15,

2. P (Coke) = 0.15,

3. P (diet drink) = 0.57,

4. P (not Dr. Pepper) = 0.68,

5. P ({regular Pepsi} ∪ {diet Dr. Pepper}) = 0.40.

Example 7.12. A pair of four sided die are rolled and the sum of the face up values is
recorded.

1. Find the probability distribution for this experiment.

2. What is the probability that the sum is eight?

3. What is the probability that the sum is even?

Solution: We have:

1. Let x be the sum of the face up values.

x 2 3 4 5 6 7 8

P (x) 1/16 2/16 3/16 4/16 3/16 2/16 1/16

2. P (8) = 1/16.

3. P ({x even}) = 8/16 = 1/2.

Example 7.13. A pair of six sided die are rolled.

1. Find the probability that the two dice show the same value.

2. Find the probability that the sum of the numbers of the two dice is 6.

Solution: We have:

79



1. P (two dice show the same value) = 6 · 1/36 = 1/6.

2. P (the sum of the numbers of the two dice is six) = 5 · 1/36 = 5/36.

Example 7.14. A bag contains ten marbles: three red, four green, and three blue.
Calculate the probability that the three marbles chosen will be:

1. All red, if marbles are drawn then replaced.

2. Two green and one blue, if marbles are drawn without replacement.

3. One of each color, if marbles are drawn then replaced.

Solution: We have:

1. P (all red with replacement) = 3/10 · 3/10 · 3/10 = 27/1000.

2. P (two gren and one blue without replacement) = (4 ·3 ·3)/(10 ·9 ·8)+(4 ·3 ·3)/(10 ·
9 · 8) + (3 · 4 · 3)/(10 · 9 · 8) = 3/20.

3. P (one of each color with replacement) = 6 · 4/10 · 3/10 · 3/10 = 63/500.

7.3 Rules of Probability

Proposition 7.15. Let S be a sample space with E and F two events. Then:

P (E ∪ F ) = P (E) + P (F )− P (E ∪ F ).

Proposition 7.16. Let S be a sample space with E an events. Then:

P (Ec) = 1− P (E).

Example 7.17. A card is drawn from a standard deck of playing cards.

1. What is the probability that it is an ace or a spade?

2. What is the probability that it is a diamond or a face card?

3. What is the probability that it is a diamond or a club?

Solution: We have:

1. P (ace or space) = P (ace) + P (space)− P (ace of spades) = 4/13.

2. P (diamond or face) = P (diamond) + P (face)− P (faces of diamond) = 11/26.

3. P (diamond or club) = P (diamond) + P (club) = 1/2.
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Example 7.18. The quality control department of Apple has determined that 3% of
the iPhone sold experience video problems, 1% experience audio problems, and 0.1%
experience both video and audio problems.

1. What is the probability that an iPhone experiences problem(s) related to video or
audio?

2. What is the probability that an iPhone does not experience any problem(s) related
to video or audio?

Solution: We have:

1. P (problem(s) related to video or audio) = 3.9%.

2. P (no problem(s) related to video or audio) = 96.1%.

Example 7.19. Let E and F be two mutually exclusive events with P (E) = 0.1 and
P (F ) = 0.6. Compute:

1. P (E ∩ F ).

2. P (E ∪ F ).

3. P (Ec).

4. P (Ec ∩ F c).

5. P (Ec ∪ F c).

Solution: We have:

1. P (E ∩ F ) = 0.

2. P (E ∪ F ) = 0.7.

3. P (Ec) = 0.9.

4. P (Ec ∩ F c) = 0.3.

5. P (Ec ∪ F c) = 1.

Example 7.20. Let E and F be two events of an experiment with sample space S.
Suppose P (E) = 0.2, P (F ) = 0.1, and P (E ∩ F ) = 0.05. Compute:

1. P (E ∪ F ).

2. P (Ec ∩ F c).

3. P (Ec ∪ F ).

4. P (Ec ∩ F ).
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Solution: We have:

1. P (E ∪ F ) = 0.25.

2. P (Ec ∩ F c) = 0.75.

3. P (Ec ∪ F ) = 0.85.

4. P (Ec ∩ F ) = 0.05.

Example 7.21. A poll by the NRA regarding gun control laws was conducted among
250 Vermont residents that owned a handgun, a rifle, both, or neither. The results of
the poll were:

Only handgun Only rifle Both Neither Total

Favor tougher laws 0 12 0 138 150
Oppose tougher laws 58 5 25 0 88

No opinion 0 0 0 12 12

Total 58 17 25 150 250

If one of the participants in this poll is selected at random, what is the probability that
they:

1. Favor tougher gun control laws.

2. Own a handgun.

3. Own a handgun but not a rifle.

4. Favor tougher gun control laws and does not own a handgun.

Solution: We have that the probability that a random participant:

1. Favor tougher gun control laws is: 150/250 = 3/5.

2. Own a handgun is: 83/250.

3. Own a handgun but not a rifle is: 58/250.

4. Favor tougher gun control laws and does not own a handgun is: 138/250 = 69/125.

7.4 Use of Counting Techniques in Probability

Theorem 7.22. Given a finite uniform sample space S = {s1, . . . , sn}, an event E
consisting of the sample points e1, . . . , ek, and a probability P : S −→ [0, 1], then
P (E) = n(E)/n(S).

Because of this result, it is enough to use the counting techniques for sets to compute
the values for n(E) and n(S), and then dividing them we will obtain the probability of
the event E happening.
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Example 7.23. A fair coin is tossed six times. Compute the probability that the coin
will land heads:

1. Exactly three times.

2. At most three times.

3. On the first and last toss.

Solution: We have that the probability that the coin will land heads:

1. Exactly three times is:
C(6, 3)

26
=

20

64
=

5

16
.

2. At most three times:

C(6, 0) + C(6, 1) + C(6, 2) + C(6, 3)

26
=

42

64
=

21

32
.

3. On the first and last toss:
1 · 24 · 1

26
=

16

64
=

1

4
.

Example 7.24. Two cards are selected at random from a standard deck of 52 cards.
Compute the probability that:

1. They are both aces.

2. Exactly one is an ace.

3. Neither of them is an ace.

Solution: We have that the probability that:

1. They are both aces is:
C(4, 2)

C(52, 2)
=

6

1326
=

1

221
.

2. Exactly one is an ace is:

C(4, 1)C(48, 1)

C(52, 2)
=

192

1326
=

32

221
.

3. Neither of them is an ace is:

C(48, 2)

C(52, 2)
=

1128

1326
=

188

221
.

Example 7.25. At the MSC Lost and Found there are 100 blank cassette tapes, 10 of
which are known to be defective. If a volunteer selects 6 of these cassette tapes, compute
the probability that:
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1. Two of them are defective.

2. At least one of them is defective.

Solution: We have that the probability that:

1. Two of them are defective is:

C(10, 2)C(90, 4)

C(100, 6)
=

69687

722456
.

2. At least one of them is defective is:

1− C(90, 6)

C(100, 6)
=

1725569

3612280

since the probability that none of them is defective is C(90, 6)/C(100, 6).

Example 7.26. A group of r people are selected at random from MATH 141:502. What
is the probability that at least two of them have the same birthday?
Solution: We have that the probability that any two individuals have different birthdays
is C(365, r)/365r. This means that the probability that at least two of them have the
same birthday is:

1− C(365, r)

365r
.

Example 7.27. A five hand card of poker is dealt from a standard deck. Compute the
probability of being dealt the following hands:

1. A straight flush.

2. Four of a kind.

3. A full house.

4. A flush (but not a straight flush).

5. A straight (but not a straight flush).

6. Three of a kind (but not a full house).

7. Two pair.

Solution: We have that the probability of being dealt:

1. A straight flush is:
C(10, 1)C(4, 1)

C(52, 2)
=

40

2598960
.

2. Four of a kind is:
C(13, 1)C(4, 4)C(48, 1)

C(52, 2)
=

624

2598960
.
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3. A full house is:

C(13, 1)C(4, 3)C(12, 1)C(4, 2)

C(52, 2)
=

3744

2598960
.

4. A flush (but not a straight flush) is:

C(4, 1)C(13, 5)− C(10, 1)C(4, 1)

C(52, 2)
=

5108

2598960
.

5. A straight (but not a straight flush) is:

C(10, 1)C(4, 1)C(4, 1)C(4, 1)C(4, 1)C(4, 1)− C(10, 1)C(4, 1)

C(52, 2)
=

10200

2598960
.

6. Three of a kind (but not a full house) is:

C(13, 1)C(4, 3)C(12, 2)C(4, 1)C(4, 1)

C(52, 2)
=

54912

2598960
.

7. Two pair is:
C(13, 2)C(4, 2)C(4, 2)C(44, 1)

C(52, 5)
=

123552

2598960
.

7.5 Conditional Probability and Independent Events

Usually the probability of an event happening is affected by the occurrence of other
events. We will use conditional probability to study this phenomenon.

Definition 7.28. The probability that A occurs given that B has already occurred
is called conditional probability and we denote it by P (A|B).

Example 7.29. Two cards are drawn without replacement from a well shuffled standard
deck of 52 cards. Find:

1. The probability that the first card drawn is an ace.

2. The probability that the first card drawn is not an ace.

3. The probability that the second card drawn is an ace given that the first card
drawn was an ace.

4. The probability that the second card drawn is an ace given that the first card
drawn was not an ace.

5. The probability that the second card drawn is not an ace given that the first card
drawn was an ace.
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6. The probability that the second card drawn is not an ace given that the first card
drawn was not an ace.

Solution: We may call A the event of the first card drawn being an ace and B the event
of the second card drawn being an ace. We then have that:

1. P (A) = 4/52.

2. P (Ac) = 48/52.

3. P (B|A) = 3/51.

4. P (B|Ac) = 4/51.

5. P (Bc|A) = 48/51.

6. P (Bc|Ac) = 47/51.

Theorem 7.30. Given A and B events in an experiment with P (A) 6= 0, then the
probability that B will occur given that A has occurred is:

P (B|A) =
P (A ∩B)

P (A)
.

The probability of event A and event B happening is then:

P (A ∩B) = P (B|A)P (A).

Example 7.31. A pair of fair 6 sided dice is rolled. What is the probability that the
sum of the numbers facing up is 7 if it is known that one of the numbers is a 5?
Solution: We may call F the event of one of the numbers being a 5 and S the event
that the sum of the numbers facing up is a 7. We then have that:

P (S|F ) =
P (S ∩ F )

P (F )
=

2/36

11/36
=

2

11
.

Example 7.32. In a test conducted by the US Army it was found that of 1000 new
recruits, there were 600 with brown hair and 400 with blond hair. Moreover, 50 of the
brown haired and 4 of the blond recruits were colorblind. Given that a randomly selected
recruit is colorblind, what is the probability that the recruit has brown hair?
Solution: We may call C the event of a randomly selected recruit being colorblind and
B the event that a randomly selected recruit has brown hair. We then have that:

P (B|C) =
P (B ∩ C)

P (B)
=

50/1000

54/1000
=

25

27
.
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Example 7.33. There are 300 seniors at Texas A&M Consolidated High School, of
which 140 have brown hair, and the rest have blond hair. It is known that 80% of the
brown haired seniors have a driver’s license, while 60% of the blond haired seniors have
a driver’s license. Find:

1. The probability that the student has brown hair and a driver’s license.

2. The probability that the student has blond hair but not a driver’s license.

3. The probability that the student has a driver’s license.

Solution: We may call B the event of a senior having brown hair and D the event of a
senior having a driver’s license. We then have that:

1. The probability that the student has brown hair and a driver’s license is:

P (B ∩D) =
140

300
· 80

100
=

28

75
.

2. The probability that the student has blond hair but not a driver’s license is:

P (Bc ∩Dc) =
160

300
· 40

100
=

16

75
.

3. The probability that the student has a driver’s license is:

P (D) = P (D ∩B) + P (D ∩Bc) =
140

300
· 80

100
+

160

300
· 60

100
=

52

75
.

Example 7.34. Two cards are drawn without replacement from a well shuffled standard
deck of 52 cards. Find:

1. The probability that the first card drawn is an ace and the second card drawn is
an ace.

2. The probability that the first card drawn is not an ace and the second card drawn
is an ace.

Solution: We may call A the event of the first card drawn being an ace and B the event
of the second card drawn being an ace. We then have that:

1. P (A ∩B) = (4/52) · (3/51) = 1/221.

2. P (Ac ∩B) = (48/52) · (4/51) = 16/221.

Example 7.35. A box contains eight batteries, two of which are known to be defective.
The batteries are selected (one at a time without replacement) and tested until a non-
defective one is found. What is the probability that the number of batteries tested
is:
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1. One.

2. Two.

3. Three

Solution: We have that:

1. P ({one battery tested}) = 6/8 = 3/4.

2. P ({two battery tested}) = (2/8) · (6/7) = 3/14.

3. P ({two battery tested}) = (2/8) · (1/7) · 1 = 1/28.

Definition 7.36. We say that two events A and B are independent if the outcome
of one event does not affect the outcome of the other, that is, P (B|A) = P (B) and
P (A|B) = P (A). The probability of the independent events A and B happening is
then:

P (A ∩B) = P (B)P (A)

and two events A and B are independent if and only if P (A ∩B) = P (B)P (A).

Example 7.37. An experiment consists of two trials. The outcomes of the first trial
are X, Y , and Z with probabilities 0.3, 0.25, and 0.45 respectively. The outcomes of the
second trial are A and B with probabilities 0.3 and 0.7 respectively.

1. Find P (X) · P (B).

2. Find P (X ∩B).

3. Are X and B mutually exclusive?

4. Are X and B independent?

Solution: We have that:

1.

P (X) = 0.3

P (B) = P (B ∩X) + P (B ∩ Y ) + P (B ∩ Z)

= 0.3 · 0.7 + 0.25 · 0.7 + 0.45 · 0.7 = 0.7

P (X) · P (B) = 0.3 · 0.7 = 0.21.

2. P (X ∩ Y ) = (0.3) · (0.7) = 0.21.

3. No since X ∩B 6= ∅.

4. Yes since P (B ∩X) = P (X) · P (Y ).
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Example 7.38. A survey conducted for the National Science Foundation found that
of 2000 individuals, 680 were heavy smokers, 50 had emphysema, and 42 of the heavy
smokers had emphysema. Using this data, determine whether the events S “being a
heavy smoker” and E “having emphysema” are independent events.
Solution: We need to determine whether P (S ∩ E) equals P (S) · P (E). We have:

P (S ∩ E) = 42/2000

and
P (S) = 680/2000, P (E) = 50/2000 so P (S) · P (E) = 17/2000

and thus since P (S ∩ E)42/2000 6= 17/2000 = P (S) · P (E) we have that they are not
independent events.

7.6 Bayes’ Theorem

Sometimes we want to compute probabilities after the outcome of an experiment has
been observed. These are called a posteriori probabilities. The probabilities that give
the likelihood that an event will occur in the future are called a priori probabilities.

Example 7.39. Three machines A, B, and C produce the same engine component.
Machine A produces 45% of the total components, machine B produces 30% of the total
components, and machine C produces 25% of the total components. However, 6% of
the components produced by machine A do not meet established specifications, 4% of
the components produced by machine B do not meet established specifications, and
3% of the components produced by machine A do not meet established specifications.
A component was randomly selected and was found to be defective, call this event D.
What is the probability that the component selected was produced by machine A?
Solution: Consider the following tree diagram:

•

C

Dc
97%

D
3%

25%

B

Dc
96%

D
4%

30%

A

Dc
94%

D
6%

45
%
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We can read from it that:

P (A|D) =
P (A ∩D)

P (D)
=

0.45 · 0.06

0.45 · 0.06 + 0.3 · 0.04 + 0.25 · 0.03
=

18

31
.

Theorem 7.40. Let A1, ...,An be a partition of the sample space S and let E be
an event of the experiment such that P (E) 6= 0. Then the a posteriori probability
P (Ai|E), 1 ≤ i ≤ n, is given by:

P (Ai|E) =
P (Ai)P (E|Ai)

P (A1)P (E|A1) + · · ·+ P (An)P (E|An)
=

P (Ai)P (E|Ai)∑n
j=1 P (Aj)P (E|Aj)

.

Example 7.41. Use the following tree diagram to find:

1. P (A)P (D|A).

2. P (B)P (D|B).

3. P (A|D).

•

B

Dc
75%

D
25%

60%

A

Dc
80%

D
20%

40%

Solution: We have:

1.

P (A)P (D|A) = P (A)
P (A ∩D)

P (A)
= 0.40 · 0.20 =

2

25
.

2.

P (B)P (D|B) = P (B)
P (B ∩D)

P (B)
= 0.60 · 0.25 =

3

20
.

3.

P (A|D) =
P (A ∩D)

P (D)
=

0.40 · 0.20

0.40 · 0.20 + 0.60 · 0.25
=

8

23
.
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Example 7.42. The trademark Texas A&M University merchandise is manufactured in
three different locations and then shipped to College Station for retail. Bryan, Navasota,
and Waco provide 50%, 30%, and 20% respectively of the merchandise. The quality
control over time has determined that 1% of the products from Bryan are defective,
while 2% of the products from Navasota and Waco are defective. If a random item is
selected and it is found to be defective, what is the probability that it was manufactured
in Waco?
Solution: We have that:

P (W |D) =
P (W ∩D)

P (D)
=

0.20 · 0.02

0.50 · 0.01 + 0.30 · 0.02 + 0.20 · 0.02
=

4

15
.

Example 7.43. The office of the Registrar released the accompanying information con-
cerning the contemplated majors of its freshman class, and if they had prior experience
in the major or not. The following table summarizes that information:

Major % freshman choosing % experience % no experience

Business 24 38 62
Humanities 8 60 40
Education 8 66 34

Social Science 7 58 42
Natural Sciences 9 52 48

Other 44 48 52

1. What is the probability that a student selected at random from the freshman class
had prior experience in their major?

2. What is the probability that a business student selected at random from the fresh-
man class had no prior experience in their major?

3. What is the probability that a student with prior experience in their major selected
at random from the freshman class is majoring in business?

Solution: We call X the event of a student having prior experience in their major, and
Y the event of a student not having prior experience in their major. We then have:

1.

P (X) = P (X ∩B) + P (X ∩H) + P (X ∩ E) + P (X ∩ S) + P (X ∩N) + P (X ∩O)

= 0.24 · 0.38 + 0.08 · 0.60 + 0.08 · 0.66 + 0.07 · 0.58 + 0.09 · 0.52 + 0.44 · 0.48

= 0.4906.

2.

P (Y |B) =
P (Y ∩B)

P (B)
=

0.24 · 0.62

0.24
=

31

50
.
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3.

P (B|X) =
P (B ∩X)

P (X)
=

0.24 · 0.38

0.4906
=

456

2453
.

Example 7.44. Find the missing probabilities on the following tree diagram and then
find:

1. P (A).

2. P (D).

3. P (Dc).

4. P (B ∩D).

5. P (D|A).

6. P (B|Dc).

•

B

Dc
75%

D60%

A

Dc

D
20%

Solution: We have:

1. P (A) = 0.4.

2. P (D) = 0.23.

3. P (Dc) = 0.77.

4. P (B ∩D) = 0.15.

5. P (D|A) = 0.20.

6. P (B|Dc) = 45/77.

Example 7.45. Given P (F ) and P (E|F ), find P (F |E) in the context of the following
tree diagram.
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•

F c

Ec
p6

E
p5

p2

F

Ec
p4

E
p3

p1

Solution: We have:

P (F |E) =
P (F ∩ E)

P (E)
=

p1 · p3
p1 · p3 + p2 · p5

=
P (F )P (E|F )

P (F )P (E|F ) + P (F c)P (E|F c)

=
P (F )P (E|F )

P (F )P (E|F ) + (1− P (F ))P (E|F c)

so we also need information about P (E|F c) to be able to find what we are asked.

Example 7.46. We have two jars of cookies. In one we have 10 chocolate chip cookies
and 30 plain cookies, while in the second we have 20 of each. We toss a coin to determine
from which jar we are going to pick, and then we randomly choose a cookie from that
jar. In we chose a plain cookie, what is the probability that we picked the cookie from
the first jar?
Solution: We have that:

P (J1|P ) =
P (J1 ∩ P )

P (P )
=

0.50 · (30/40)

0.50 · (30/40) + 0.50 · (20/40)
=

3

5
.
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8 Probability Distributions and Statistics

Statistics is the branch of mathematics concerned with the collection, analysis, and
interpretation, of data.

8.1 Distributions of Random Variables

Definition 8.1. A random variable is a function X : S −→ R that assigns a real
number to each outcome of a chance experiment.

Example 8.2. A coin is tossed three times. Let the random variable X denote the
number of heads that occur in three tosses.

1. List the outcomes of the experiment.

2. Find the value assigned to each outcome of the experiment by the random variable
X.

3. Find the event comprising the outcomes to which a value of two has been assigned
by X, that is, X = 2.

Solution:

1. The sample space is:

S = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

2. The values assigned by X are the following table:

S HHH HHT HTH THH HTT THT TTH TTT

X 3 2 2 2 1 1 1 0

3. The event is {HHT,HTH, THH}.

Example 8.3. A coin is tossed repeatedly until a head occurs. Let Y be the random
variable denoting the number of coin tosses in the experiment. What are the values of
Y ?
Solution: Y ∈ N, Y ≥ 1.

Example 8.4. A disposable flashlight is turned on until the battery runs out. Let the
random variable Z denote the length in hours of the life of the battery. What are the
values that Z may assume?
Solution: Z ∈ R, Z ≥ 0.

Example 8.5. A car has a full tank. It is driven until the tank is empty. Let the
random variable Z denote the distance in kilometers that the car traveled. What are
the values that Z may assume?
Solution: Z ∈ R, Z > 0.
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Definition 8.6. Given a random variable X : S −→ R, it is classified into three
categories depending on the values it assumes.

1. Finite discrete: assumes only finitely many values.

2. Infinite discrete: assumes infinitely many values that can be arranged in a
sequence.

3. Continuous: assumes values that comprise an interval of the real numbers.

Definition 8.7. Given a random variable X : S −→ R, its probability distribution
is a table displaying the outcomes of the random variable together with the probability
of that outcome happening.

Example 8.8. A coin is tossed three times. Let the random variable X denote the
number of heads that occur in three tosses.

1. Find the probability distribution of the random variable.

2. Find the probability of X ≥ 2.

Solution:

1. The probability distribution is:

X 0 1 2 3

P (X) 1/8 3/8 3/8 1/8

2. We have: P (X ≥ 2) = P (X = 2) + P (X = 3) = 1/2.

Example 8.9. Once a minute for an hour, an observer counts the number of cars
waiting in line at McDonald’s. The following data give the number of cars observed and
the frequency of occurrence. Find the probability distribution of the random variable
X, where X is the number of cars waiting in line.

Number of cars 0 1 2 3 4 5 6 7 8

Frequency of occurrence 2 9 16 12 8 6 4 2 1

Solution: The probability distribution is:

X 0 1 2 3 4 5 6 7 8

P (X) 2/60 9/60 16/60 12/60 8/60 6/60 4/60 2/60 1/60

95



Definition 8.10. A histogram is a graphical representation of the distribution of a
random variable. The following is a method to construct a histogram:

1. Draw a number line that contains all the variables attained by the random
variable.

2. Above each value attained by the random variable, draw a rectangle of width
one and height equal to the probability that the random variable assigns to that
value.

In this way, the area of the rectangle associated with a value attained by the random
variable gives exactly the probability that the random variable associates to that value.
In addition, the probability that the random variable associates to several value is given
by the sum of the areas of the rectangles associated with those values that the random
variable takes.

Example 8.11. A coin is tossed three times. Let the random variable X denote the
number of heads that occur in three tosses. Construct a histogram for the random
variable X.
Solution: We have:

0 1 2 3
0.1

0.2

0.3

0.4

Example 8.12. Suppose the probability distribution of a random variable X is rep-
resented by the following non-normalized histogram. Shade the part of the histogram
whose area gives the probability P (10 ≤ X ≤ 16).
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8 9 10 11 12 13 14 15 16 17

2

3

4

5

6

Solution: We shade:

8 9 10 11 12 13 14 15 16 17

2

3

4

5

6

8.2 Expected Value

Definition 8.13. The average or mean of the n numbers x1, . . . , xn is:

x =
x1 + · · ·+ xn

n
.

The median of a collection of numbers arranged in increasing or decreasing order
is the middle number if there is an odd number of entries, and the mean of the two
middle numbers if there is an even number of entries.

The mode of a collection of numbers is the number that occurs more frequently
in the collection.

These three numbers are sometimes referred as measures of central tendencies.
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Example 8.14. Once a minute for an hour, an observer counts the number of cars
waiting in line at McDonald’s. The following data give the number of cars observed and
the frequency of occurrence. Find the three measures of central tendencies.

Number of cars 0 1 2 3 4 5 6 7 8

Frequency of occurrence 2 9 16 12 8 6 4 2 1

Solution: We have x = 185/60 = 37/12, the median is 3 (the average of positions 30
and 31, which are both 3), and the mode is 2.

Example 8.15. Once a minute for an hour, an observer counts the number of cars
waiting in line at McDonald’s. The following data give the number of cars observed and
the frequency of occurrence. Find the probability distribution of the random variable X,
where X is the number of cars waiting in line. Find the average number of cars waiting
in line at McDonald’s.

Number of cars 0 1 2 3 4 5 6 7 8

Frequency of occurrence 2 9 16 12 8 6 4 2 1

Solution: The probability distribution is:

X 0 1 2 3 4 5 6 7 8

P (X) 2/60 9/60 16/60 12/60 8/60 6/60 4/60 2/60 1/60

The average number of cars is x = 185/60 = 37/12.

Definition 8.16. Let X be a random variable assuming the values x1, . . . , xn with
associated probabilities p1, . . . , pn respectively. The expected value of X is denoted
by E(X) and is given by:

E(X) = x1p1 + · · ·+ xnpn.

Example 8.17. Two dice are rolled. Let X be a random variable giving the sum of the
faces that fall uppermost. Find the expected value of X.
Solution: The probability distribution is:

X 2 3 4 5 6 7 8 9 10 11 12

P (X) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

The expected value is E(X) = 7.

Example 8.18. The Island Club is holding a fund raising raffle. They have sold 10000
for $2 each. There will be a first price of $3000, three second prices of $1000 each, five
third prices of $500 each, and twenty consolation prices of $100 each. Let X denote the
net winnings of a ticket. Find the probability distribution of X and the expected value
of X. Interpret your results.
Solution: The probability distribution is:
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X −2 98 498 998 2998

P (X) 9971/10000 20/10000 5/10000 3/10000 1/10000

The expected value is E(X) = −0.95. That is, we expect to lose $0.95 per ticket bought.

Example 8.19. A group of Wall Street investors intend to purchase one of two motel
complexes for sale in New York City. The terms of sale of the two motels are similar,
but the Days Inn has 52 rooms and is in a slightly better location than the Holiday
Inn, which has 60 rooms. The records from each motel for the occupancy rates and the
corresponding probabilities between May and September are shown in the tables below.
The average profit per day for each room at the Days Inn is $10, while the average profit
per day for each room at the Holiday Inn is $9.

Days Inn

Occupancy 80% 85% 90% 95% 100%
Probability 0.19 0.22 0.31 0.23 0.05

Holiday Inn

Occupancy 75% 80% 85% 90% 95% 100%
Probability 0.35 0.21 0.18 0.15 0.09 0.02

1. Find the average number of rooms occupied per day at each motel.

2. If the investor’s objective is to purchase the motel that generates the higher daily
profit, which motel should they purchase?

Solution:

1. The expected occupancy rate for each motel is:

E(D) = 0.8865 and E(H) = 0.824

so the average number of rooms occupied is:

D : 46.098 ≈ 46 and H : 49.44 ≈ 49.

2. The daily average profit is then:

D : 460.98 ≈ 461 and H : 444.96 ≈ 445.

so the investors should purchase the Daily Inn.

Definition 8.20. Let P (E) be the probability of an event E happening. The odds
in favor of E happening are P (E)/P (Ec) = P (E)/(1−P (E)). The odds against E
happening are P (Ec)/P (E) = (1− P (E))/P (E).
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Example 8.21. The probability of an event E of not occurring is 0.6. What are the
odds in favor of E occurring? What are the odds against E occurring?
Solution: The odds in favor of E occurring are 2/3. The odds against E occurring are
3/2.

Definition 8.22. Let the odds in favor of an event E occurring be a to b. Then the
probability of the event E occurring is P (E) = a/(a+ b). This is described as given
the odds.

Example 8.23. The odds that the Dallas Cowboys win the Superbowl this season are
7 to 5. What is the probability of the event occurring?
Solution: The probability of the event occurring is 7/12.

Example 8.24. The odds that it will not rain tomorrow are 3 to 2. What is the
probability of rain tomorrow?
Solution: The probability of rain tomorrow is 2/5.

Example 8.25. The probability of rain tomorrow is 20%. What are the odds that it
will not rain tomorrow?
Solution: We denote by E the event of raining tomorrow, so Ec is the event of not
raining tomorrow. We are given that P (E) = 0.2. This means that P (Ec) = 1 − 0.2 =
0.8 = 4/5. Since if the odds in favor of Ec occurring are a to b, then the probability of
Ec occurring is a/(a + b) = P (Ec) = 4/5, we have that a = 4 and b = 1. This means
that the odds in favor of Ec occurring are 4 to 1.

8.3 Variance and Standard Deviation

The mean, as we saw, expresses the location of the center of a probability distribution.
The variance of a probability distribution measures the spread of the values that the
probability distribution takes around the mean.

Definition 8.26. Suppose that a random variable has the following probability dis-
tribution.

x x1 · · · xn
P (X = x) p1 · · · pn

with expected value E(X) = µ. Then the variance of X is:

Var(X) = p1(x1 − µ)2 + · · ·+ pn(xn − µ)2.

The standard deviation of X is σ =
√

Var(X).

Example 8.27. A random variable X has the following probability distribution. Find
the mean, the variance, and the standard deviation.
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X 1 2 3 4 5

P (X) 0.3 0.2 0.1 0.2 0.2

Solution: The expected value is E(X) = 2.8. To find the variance we complete the
following table.

xi xi − µ (xi − µ)2 pi(xi − µ)2

1 −1.8 3.24 0.972
2 −0.8 0.64 0.128
3 0.2 0.04 0.004
4 1.2 1.44 0.288
5 2.2 4.84 0.968

Total 2.36

and thus Var(X) = 2.36 meaning that σ =
√

2.36 ≈ 1.536.

Example 8.28. The following histograms represent the probability distribution of the
random variables X and Y respectively.

1 2 3 4

0.2

0.22

0.24

0.26

0.28

0.3

1 2 3 4

0.2

0.22

0.24

0.26

0.28

0.3

1. Determine the mean of each random variable. Determine by inspection which
probability distribution has the larger variance.

2. Find the variance and standard deviation for each random variable.

Solution:

1. We have E(X) = 2.5 = E(Y ). Since the values of X are more disperse, and the
values of Y are more concentrated, the variance of X should be larger than the
variance of Y .

2. We have Var(X) = 1.45 and σX =
√

145/10 ≈ 1.204, Var(Y ) = 1.05 and σY =√
105/10 ≈ 1.025.
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8.4 The Binomial Distribution

An important type of experiments are the ones that have exactly two outcomes: a coin is
tossed and can land in heads or tails, a game of chance is played and the player can win
or lose, a medical treatment can be effective or ineffective... This type of experiments
are called Bernoulli trials or binomial trials.

Definition 8.29. A binomial experiment is one having the following properties:

1. The number of trials in the experiment is fixed.

2. There are exactly two outcomes to the experiment: success and failure.

3. The probability of success in each trial is the same.

4. The trials are independent of each other.

A random variable X that gives the number of successes in a binomial experi-
ment is called a binomial random variable and its distribution is called a binomial
distribution.

Example 8.30. Determine whether the following experiments are binomial. Justify
your answer

1. Rolling a fair six sided dice three times and observing the number of times a 6 is
obtained.

2. Rolling a fair six sided dice three times and observing the number that lands
uppermost.

3. Recording the number of accidents that occur at a given intersection on four clear
days and one rainy day.

Solution:

1. It is binomial since:

(a) The number of trials in the experiment is fixed.

(b) There are exactly two outcomes: rolling a 6 is a success and rolling everything
else is a failure.

(c) The probability of success in each trial is 1/6.

(d) The trials are independent of each other.

2. It is not binomial since we have more than one outcome.

3. It is not binomial for several reasons: the number of accidents is not fixed (that
is, we do not have a fixed number of trials), we have more than one outcome (that
is, we do not have a success), and the probability of having an accident on a rainy
day is not the same as the probability of having an accident on a clear day.
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Theorem 8.31. In a binomial experiment with probability of success p, set q = 1−p,
then the probability of exactly x successes in n independent trials is C(n, x)pxqn−x.

Example 8.32. A fair dice is rolled four times. Compute the probability of obtaining
exactly one 6 in the four throws.
Solution: We call S the event of rolling a six, and F the event of not rolling a six. We
can have:

SFFF with probability
1

6
· 5

6
· 5

6
· 5

6

FSFF with probability
5

6
· 1

6
· 5

6
· 5

6

FFSF with probability
5

6
· 5

6
· 1

6
· 5

6

FFFS with probability
5

6
· 5

6
· 5

6
· 1

6

and thus the probability is 4 · (1/6) · (5/6) = C(4, 1)(1/6)1(5/6)3 ≈ 0.3858.

Example 8.33. A player rolls a fair dice five times. If a one or a six is rolled, the
player wins. Otherwise, the player loses. This experiment has the following histogram
(approximated to the third decimal).
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1. What is the probability of obtaining zero or one successes in the experiment?

2. What is the probability of obtaining at least one success in the experiment?

Solution:

1. The probability of obtaining zero or one successes in the experiment is 0.132 +
0.329 = 0.461.
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2. The probability of obtaining at least one success in the experiment is 1− 0.132 =
0.868.

Example 8.34. It was found that 30% of the restaurants in College Station are in
violation of the health code. If a health inspector randomly selects five restaurants for
inspection, what is the probability that:

1. None of the restaurants are in violation of the health code?

2. Just one of the restaurants is in violation of the health code?

3. At least two of the restaurants are in violation of the health code?

Solution: We have p = 0.3, so q = 0.7, and n = 5.

1. P (X = 0) = C(5, 0)(0.3)0(0.7)5 = 0.16807.

2. P (X = 1) = C(5, 1)(0.3)1(0.7)4 = 0.36015.

3. P (X ≥ 2) = P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5) = 0.47178.

Example 8.35. A new drug being tested causes a serious side effect in 5 out of 100
patients. What is the probability that in a sample of 10 patients, none get the side
effects from taking the drug?
Solution: The success of the experiment is getting the side effect. In that case we have
p = 0.05, so q = 0.95, and n = 10. The probability of none getting the side effects is
then P (X = 0) = C(10, 0)(0.05)0(0.95)10 ≈ 0.5987.

Theorem 8.36. Let X be a binomial random variable associated with a binomial
experiment consisting of n trials with probability of success p, and set q = 1 − p.
Then: E(X) = np, Var(X) = npq, and σX =

√
npq.

Example 8.37. A player rolls a fair dice five times. If a one or a six is rolled, the
player wins. Otherwise, the player loses. Find the mean, the variance, and the standard
deviation of the binomial random variable associated to this experiment.
Solution: We have p = 1/3, so q = 2/3, and n = 5. Thus E(X) = 5/3, Var(X) =
5 · (1/3) · (2/3) = 10/9, σX =

√
10/3 ≈ 1.0541.

8.5 The Normal Distribution

A continuous random variable may have any value lying in an interval of real numbers,
and thus their corresponding probability distributions are curves, that is, functions.

Definition 8.38. The function associated with the probability distribution of a con-
tinuous random variable X is called a probability density function.

104



Theorem 8.39. Let f : R −→ R be a probability density function associated with
the random variable X. We then have:

1. The values f(x) are non-negative for all x ∈ R.

2. The area of the region between the graph of f and the horizontal axis is 1.

3. The probability P (a ≤ X ≤ b) is equal to the area of the region between the
graph of f , the horizontal axis, the vertical line x = a, and the vertical line
x = b.

Recalling the experiment having a player rolling a fair dice five times, and whenever
a one or a six is rolled the player wins, but otherwise the player loses. This can be
represented in the following histogram, where the segments connecting the top of the
bars have been connected.
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The following are left skewed continuous probability density functions:

The following are right skewed continuous probability density functions:

105



The following are centered, or normal, continuous probability density functions:

We will now focus on a specific family of continuous probability distributions, the
normal distributions. These depend only on the parameters µ and σ, which are respec-
tively their mean and standard deviation.

Theorem 8.40. The following are true for any normal distribution:

1. The curve has a peak at x = µ.

2. The curve is symmetric with respect to the vertical line x = µ.

3. The curve always lies above the horizontal axis, and it approaches this axis as
x extends indefinitely in either direction.

4. The area under the curvee is 1.

5. A 68.72% of the area under the curve lies between µ−σ and µ+σ. A 95.45%
of the area under the curve lies between µ− 2σ and µ+ 2σ. A 99.73% of the
area under the curve lies between µ− 3σ and µ+ 3σ.

The following normal distributions have different µ but the same σ.
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The following normal distributions have the same µ but different σ.

Any normal distribution can be transformed into any other normal distribution, so
we will only care about some specific values of µ and σ.

Definition 8.41. The normal distribution defined by the values µ = 0 and σ = 1
is called the standard normal distribution. The curve itself is called the standard
normal curve. The random variable Z associated to this distribution is called the
standard normal variable.

Example 8.42. Let Z be the standard normal variable. Make a sketch of the appro-
priate region under the standard normal curve and find the values of:

1. P (Z < 1.24).

2. P (Z > 0.5).

3. P (0.24 < Z < 1.48).

4. P (−1.65 < Z < 2.02).

Solution: We have:

1. P (Z < 1.24) ≈ 0.8925 and:

107
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2. P (Z > 0.5) ≈ 0.3085 and:
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3. P (0.24 < Z < 1.48) ≈ 0.3358 and:

−3 −2 −1 0 1 2 3

0

0.2

0.4

4. P (−1.65 < Z < 2.02) ≈ 0.9288 and:
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Example 8.43. Let Z be the standard normal variable. Find the value z satisfying:

1. P (Z < z) = 0.9474.

2. P (Z > z) = 0.9115.

3. P (−z < Z < z) = 0.7888.

Solution: We have:

1. z = 1.62 and the graphic representation is:

−3 −2 −1 0 1 2 3
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2. z = −1.35 and the graphic representation is:
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3. z = 1.25 and the graphic representation is:

−3 −2 −1 0 1 2 3

0

0.2

0.4

We will now make precise the previous statement that “any normal distribution can
be transformed into any other normal distribution”.

Theorem 8.44. Let X be a normal random variable with mean µ and standard
deviation σ. Then it can be transformed into the standard normal random variable
Z by the formula:

Z =
X − µ
σ

.

In fact, we have:

P (a < X < b) = P

(
a− µ
σ

< Z <
b− µ
σ

)
.

Example 8.45. Let X be a normal variable with µ = 100 and σ = 20. Find the values
of:

1. P (X < 120).

2. P (X > 70).

3. P (75 < X < 110).

Solution: We have:

1. P (X < 120) ≈ 0.8413 and:
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2. P (X > 70) ≈ 0.9332 and:

40 60 80 100 120 140 160

0

1

2

·10−2

3. P (75 < X < 110) ≈ 0.5859 and:

40 60 80 100 120 140 160

0

1

2

·10−2

8.6 Applications of the Normal Distribution

Example 8.46. The medical records of infants delivered at the Houston Methodist
Hospital show that the infants’ weight in kilograms are normally distributed with a
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mean of 3.2kg and a standard deviation of 1.2. Find the probability that an infant
selected at random from among those delivered at the hospital weighed more than 4.1kg
at birth.
Solution: We have that:

P (X > 4.1) = P (Z > 0.75) = 0.2266

and:

−1 0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

Example 8.47. The company Hill Country Fare ships potatoes to its distributors in
bags whose weights are normally distributed with a mean weight of 50kg and standard
deviation of 0.5kg. If a bag of potatoes is selected at random from a shipment, what is
the probability that it weights:

1. More than 51kg.

2. Less than 59kg.

3. Between 49 and 51 kilograms.

Solution: We have that:

1. P (X > 51) = 0.02275.

2. P (X < 49) = 0.02275.

3. P (49 < X < 51) = 0.9545.

Example 8.48. The GPA of the senior class of Texas A&M Consolidated High School
is normally distributed with a mean of 2.7 and a standard deviation of 0.4 points. The
seniors in the top 10% of the class are eligible for admission to any of the Texas A&M
University campuses. What is the minimum GPA that a senior should have to ensure
their eligibility for admission?
Solution: We have X with µ = 2.7 and σ = 0.4. We want to find x such that:

0.1 = P (X ≥ x) = P (Z ≥ (x− 2.7)/0.4) = P (Z ≥ 2.5x− 6.75) = P (Z ≤ −2.5x+ 6.7)

and since P (Z ≤ −1.28) = 0.1003 we have −2.5x + 6.7 ≈ −1.28 and thus we have
x ≈ 3.213.
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The normal distribution may be used to accurately approximate other distributions.
For example, a binomial distribution may be approximated by a normal distribution.

Theorem 8.49. Let X be a binomial random variable associated to a binomial
experiment involving n trials, each with probability of success p and q = 1−p. Then
if n is large and p is not close to 0 nor 1, the binomial distribution associated to X
may be approximated by a normal distribution having µ = np and σ =

√
npq.

Example 8.50. General Motors receives the microprocessors used to regulate fuel con-
sumption in its automobiles in shipments of 1000 each. It has been estimated that, on
average, 1% of the microprocessors that General Motors receives are defective. Deter-
mine the probability that more than 20 of the microprocessors in a single shipment are
defective.
Solution: We have that finding a defective microprocessor is a binomial experiment, in
this case with n = 1000 and p = 0.01. This means that we can approximate it with a
normal distribution Y with µ = 10 and σ = 3.1464. Hence:

P (Y > 20) ≈ P (Y > 20.5) ≈ P (Z > 3.33) = P (Z < −3.33) = 0.0004

with graphical representation:

−5 0 5 10 15 20 25

0

5 · 10−2

0.1
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0
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which indeed approximates the binomial:

18 19 20 21 22 23 24
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4

·10−3
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Example 8.51. The probability that a patient with a heart transplant performed at
the Baylor Transplant Clinic survives for a year or more after the surgery is 0.7. Of 100
patients who have undergone a heart transplant, what is the probability that:

1. Fewer than 75 will survive a year or more after the surgery.

2. Between 80 and 90, inclusive, will survive a year or more after the operation.

Solution: We have that surviving a year or more after the surgery is a binomial exper-
iment, in this case with n = 100 and p = 0.7. This means that we can approximate it
with a normal distribution Y with µ = 70 and σ = 4.5826. Hence:

1. P (Y < 75) ≈ P (Y < 74.5) ≈ P (Z < 0.98) = 0.8365, with graphical representa-
tion:

55 60 65 70 75 80 85

0

2

4

6

8

·10−2

2. P (80 < Y < 90) ≈ P (79.5 < Y < 90.5) ≈ P (2.07 < Z < 4.48) = 0.0192, with
graphical representation:
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