Name and NetID:

Question 1. Let the linear function $D(t)$ denote the distance traveled of an eighteen wheeler through Interstate 10 after t hours of travel. Assuming that $D(0)=3 \mathrm{~km}$ and $D(6)=30 \mathrm{~km}$, determine the distance traveled after four hours.

Solution. Since $D(t)$ is a linear function, there are constants $m, b \in \mathbb{R}$ such that:

$$
D(t)=m t+b
$$

Then using $D(0)=3$ and $D(6)=30$ we find:

$$
\begin{aligned}
& 3=D(0) \\
&=m 0+b \quad \text { so } \quad b=3 \\
& 30=D(6)=m 6+3 \quad \text { so } \quad m=9 / 2
\end{aligned}
$$

so we find $D(t)=(9 / 2) t+3$ meaning $D(4)=(9 / 2) 4+3=21 \mathrm{~km}$.
Question 2. A vertical line passes through the point $(3,4)$ and a horizontal line passes through the point $(2,1)$. Determine at which point the two lines cross.
Solution. The vertical line has equation $x=3$, while the horizontal line has equation $y=1$. The intersection of these two lines is the point $(3,1)$.

Question 3. The stock value, $B_{1}(t)$ and $B_{2}(t)$, of two banks after after t years of operation is given by the linear functions:

$$
8 B_{1}(t)-5 t+2=0 \quad \text { and } \quad 3 B_{2}(t)-6 t-4=0
$$

Determine how many years it takes until the stock values are equal.
Solution. We first solve for $B_{1}(t)$ on the first equation, obtaining:

$$
B_{1}(t)=\frac{5}{8} t-\frac{1}{4}
$$

we then solve for $B_{2}(t)$ on the second equation, obtaining:

$$
B_{1}(t)=2 t+\frac{4}{3}
$$

To determine how many years t it takes for both stock values to be equal, we impose $B_{1}(t)=B_{2}(t):$

$$
\frac{5}{8} t-\frac{1}{4}=B_{1}(t)=B_{2}(t)=2 t+\frac{4}{3} \quad \text { so } \quad t=-\frac{38}{33} \text { years. }
$$

However time cannot be negative, so stock values will never be equal.

