Name and Netid:

Question 1. Using either the method of substitution or elimination, determine the value of a for which the following system of equations has no solution:

$$
2 x-y=10, \quad a x+7 y=5
$$

Solution. Using the method of substitution, from the first equation we obtain that:

$$
y=2 x-10
$$

and substituting this in the second equation yields:

$$
a x+7(2 x-10)=5 \quad \text { so } \quad a x+14 x-70=0 \quad \text { so } \quad(a+14) x=70
$$

We know that there is no value of x such that $0=0 \cdot x=70$, so if $a+14=0$ this last equation has no solution. Thus for $a=-14$ the system of equations has no solution.

Question 2. Use Gauss-Jordan elimination to solve the system of linear equations: [6]

$$
x+y+4 z=31, \quad 2 x+2 y-z=8, \quad 3 x+3 y-3 z=3
$$

Solution. We first form the augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 4 & 31 \\
2 & 2 & -1 & 8 \\
3 & 3 & -3 & 3
\end{array}\right]
$$

and then we do Gauss-Jordan elimination:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc|c}
1 & 1 & 4 & 31 \\
2 & 2 & -1 & 8 \\
3 & 3 & -3 & 3
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 4 & 31 \\
0 & 0 & -9 & -54 \\
3 & 3 & -3 & 3
\end{array}\right] \xrightarrow{R_{3}-3 R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 4 & 31 \\
0 & 0 & -9 & -54 \\
0 & 0 & -15 & -90
\end{array}\right] \xrightarrow{\frac{1}{-9} R_{2}}} \\
{\left[\left.\begin{array}{ccc}
1 & 1 & 4 \\
0 & 0 & 1
\end{array} \right\rvert\, \begin{array}{c}
31 \\
0
\end{array} 0\right.}
\end{array}\right] \xrightarrow{\frac{1}{-15} R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 4 & 31 \\
0 & 0 & 1 & 6 \\
0 & 0 & 1 & 6
\end{array}\right] \xrightarrow{R_{1}-4 R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 7 \\
0 & 0 & 1 & 6 \\
0 & 0 & 1 & 6
\end{array}\right] \xrightarrow{R_{3}-R_{2}}{ }_{\left[\begin{array}{lll|l}
1 & 1 & 0 & 7 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0
\end{array}\right]}
$$

which translates into $z=6, y$ is a free variable, and $x+y=7$ so $x=7-y$. Setting $t \in \mathbb{R}$ a parameter, the general solution is $x=7-t, \quad y=t, \quad z=6$.

Bonus Question. Use Gauss-Jordan elimination to solve the system of linear equations:
[4]

$$
2 x+3 y-2 z=10, \quad 3 x-2 y+2 z=0, \quad 4 x-y+3 z=-1
$$

Solution. We first form the augmented matrix:

$$
\left[\begin{array}{ccc|c}
2 & 3 & -2 & 10 \\
3 & -2 & 2 & 0 \\
4 & -1 & 3 & -1
\end{array}\right]
$$

and then we do Gauss-Jordan elimination:

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & -3
\end{array}\right] \xrightarrow{R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

which translates into $x=2, \quad y=0, \quad z=-3$, which is the desired solution.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
2 & 3 & -2 & 10 \\
3 & -2 & 2 & 0 \\
4 & -1 & 3 & -1
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{ccc|c}
1 & 3 / 2 & -1 & 5 \\
3 & -2 & 2 & 0 \\
4 & -1 & 3 & -1
\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{ccc|c}
1 & 3 / 2 & -1 & 5 \\
0 & -13 / 2 & 5 & 15 \\
4 & -1 & 3 & -1
\end{array}\right] \xrightarrow{R_{3}-4 R_{1}}} \\
& {\left[\begin{array}{ccc|c}
1 & 3 / 2 & -1 & 5 \\
0 & -13 / 2 & 5 & 15 \\
0 & -7 & 7 & -21
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 3 / 2 & -1 & 5 \\
0 & -7 & 7 & -21 \\
0 & -13 / 2 & 5 & 15
\end{array}\right] \xrightarrow{\frac{1}{-7} R_{2}}\left[\begin{array}{ccc|c}
1 & 3 / 2 & -1 & 5 \\
0 & 1 & -1 & 3 \\
0 & -13 / 2 & 5 & 15
\end{array}\right] \xrightarrow{R_{1}-\frac{3}{2} R_{2}}} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 & -1 & 3 \\
0 & -13 / 2 & 5 & 15
\end{array}\right] \xrightarrow{R_{3}+13 R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & -3 & 9
\end{array}\right] \xrightarrow{\frac{1}{-3} R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & -3
\end{array}\right] \xrightarrow{R_{1}-\frac{1}{2} R_{3}}}
\end{aligned}
$$

