Name and NetID:

Question 1. Let A_{1}, A_{2} and A_{3} be mutually exclusive and exhaustive events of some sample space \mathcal{S}, where $P\left(A_{1}\right)=P\left(A_{2}\right)=0.3$. Suppose that one out of ten of A_{1} observations support Darwin's Theory of Evolution, one out of two of A_{2} observations support Darwin's Theory of Evolution, and two out of five of A_{3} observations support Darwin's Theory of Evolution. Given that a certain observation does not support Darwin's Theory of Evolution, calculate the probability that it is classified in A_{3}.

Solution. Since the events A_{1}, A_{2} and A_{3} are mutually exclusive and exhaustive, we have that their probabilities must add up to one, and thus $P\left(A_{3}\right)=1-P\left(A_{1}\right)-P\left(A_{2}\right)=$ 0.4. We call B the event that an observation supports Darwin's Theory of Evolution, we want to compute $P\left(A_{3} \mid B^{c}\right)$. To compute it, we use Bayes' Theorem:

$$
\begin{aligned}
P\left(A_{3} \mid B^{c}\right) & =\frac{P\left(A_{3}\right) P\left(B^{c} \mid A_{3}\right)}{P\left(A_{1}\right) P\left(B^{c} \mid A_{1}\right)+P\left(A_{2}\right) P\left(B^{c} \mid A_{2}\right)+P\left(A_{3}\right) P\left(B^{c} \mid A_{3}\right)} \\
& =\frac{P\left(A_{3}\right)\left(1-P\left(B \mid A_{3}\right)\right)}{P\left(A_{1}\right)\left(1-P\left(B \mid A_{1}\right)\right)+P\left(A_{2}\right)\left(1-P\left(B \mid A_{2}\right)\right)+P\left(A_{3}\right)\left(1-P\left(B \mid A_{3}\right)\right)} \\
& =\frac{0.4 \cdot(1-2 / 5)}{0.3 \cdot(1-1 / 10)+0.3 \cdot(1-1 / 2)+0.4 \cdot(1-2 / 5)}=\frac{4}{11}
\end{aligned}
$$

and thus $P\left(A_{3} \mid B^{c}\right)=4 / 11$.
Question 2. The probability of a Texas A\&M student of going to a football game depends on how long they have been at the University and what is their favorite color. Let F represent a freshman, S a sophomore, and J a junior, while M if their favorite color is maroon. The probabilities are:

$$
P(F)=0.42, \quad P(S)=0.21, \quad P(J)=0.12, \quad P(M)=0.25
$$

1. Given that $P(S \cap M)=0.11$, calculate the probability that a student going to a game has maroon as their favorite color given it is a sophomore.
2. Assuming that having maroon as a favorite color is independent of how long a student has been at the University, calculate the probability that a student going to a game has maroon as their favorite color given it is a sophomore.

Solution.

1. We use the usual formula for conditional probability to establish:

$$
P(M \mid S)=\frac{P(M \cap S)}{P(S)}=\frac{0.11}{0.21}=\frac{11}{21}
$$

2. If having maroon as a favorite color is independent of how long a student has been at the University, we then have that the conditional probability does not depend on being a sophomore, that is, $P(M \mid S)=P(M)=0.25$.

Bonus Question. Let $\mathcal{S}=\{0,1,2,4,5,6,7,8\}$ be a uniform sample space. Determine the probability that a chosen number is greater than 5 given that it is even.
Solution. We call F the event of the chosen number being greater than 5 , and we call E the event of the chosen number being even. Notice that the probability of a chosen number being even is $P(E)=n(E) / n(S)=5 / 8$, and the probability of a number being bigger than five and even is $P(F \cap E)=n(E \cap F) / n(S)=2 / 8$. We can now use the usual formula for conditional probability to establish:

$$
P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{2 / 8}{5 / 8}=\frac{2}{5} \text {. }
$$

