Math 33A
Linear Algebra and Applications

Discussion 10

Problem 1.

Consider an $n \times m$ matrix A with $\operatorname{rank}(A)=m$, and a singular value decomposition $A=U \Sigma V^{T}$. Show that the least-squares solution of a linear system $A \vec{x}=\vec{b}$ can be written as

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}} .
$$

Solution: For some vector \vec{x}^{*} to be a least-squares solution it just needs to satisfy $A \vec{x}^{*}=\operatorname{proj}_{i m(A)}(\vec{b})$. Since $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}$ are an orthonormal basis of \mathbb{R}^{n} then

$$
\begin{aligned}
A \vec{x}^{*} & =A\left(\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}}\right)=\vec{b} \cdot \overrightarrow{u_{1}} \frac{A \overrightarrow{v_{1}}}{\sigma_{1}}+\cdots+\vec{b} \cdot \overrightarrow{u_{m}} \frac{A \overrightarrow{v_{m}}}{\sigma_{m}} \\
& =\left(\vec{b} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}+\cdots+\left(\vec{b} \cdot \overrightarrow{u_{m}}\right) \overrightarrow{u_{m}}=\operatorname{proj}_{\operatorname{im}_{(A)}}(\vec{b})
\end{aligned}
$$

because $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is an orthonormal basis of $\operatorname{im}(A)$. Thus \vec{x}^{*} is a least-squares solution, as desired.

Problem 2(\star).

Consider the 4×2 matrix

$$
A=\frac{1}{10}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] .
$$

Find the least-squares solution of the linear system

$$
A \vec{x}=\vec{b} \quad \text { where } \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

Solution: We can read off the decomposition of A the following

$$
\overrightarrow{u_{1}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \overrightarrow{u_{2}}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \overrightarrow{v_{1}}=\frac{1}{5}\left[\begin{array}{c}
3 \\
-4
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{5}\left[\begin{array}{l}
4 \\
3
\end{array}\right], \sigma_{1}=2, \sigma_{2}=1
$$

so by the above we find

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\frac{\vec{b} \cdot \overrightarrow{u_{2}}}{\sigma_{2}} \overrightarrow{v_{2}}=\left[\begin{array}{l}
-1 / 10 \\
-16 / 5
\end{array}\right] .
$$

Problem 3.

(a) Explain how any square matrix A can be written as $A=Q S$, where Q is orthogonal and S is symmetric positive semidefinite. This is called the polar decomposition of A.
(b) Is it possible to write $A=S_{1} Q_{1}$, where Q_{1} is orthogonal and S_{1} is symmetric positive semidefinite?

Solution:

(a) Let $A=U \Sigma V^{T}$ be the singular value decomposition of A. Set $Q=U V^{T}$ and $S=V \Sigma V^{T}$, we can rewrite

$$
A=U \Sigma V^{T}=U V^{T} V \Sigma V^{T}=Q S
$$

where Q is orthogonal because it is the product of orthogonal matrices, and S is symmetric since

$$
S^{T}=\left(V \Sigma V^{T}\right)^{T}=\left(V^{T}\right)^{T} \Sigma^{T} V^{T}=V \Sigma V^{T}
$$

because Σ only has non zero entries in its diagonal. Moreover, since S is similar to Σ then they have the same eigenvalues, and the eigenvalues of Σ are its diagonal entries, which are all positive or zero. Thus S is positive semidefinite.
(b) Yes. Set $S_{1}=U \Sigma U^{T}$ and $Q_{1}=U V^{T}$ and rewrite

$$
A=U \Sigma V^{T}=U \Sigma U^{T} U V^{T}=S_{1} Q_{1}
$$

where, as we just saw, Q_{1} and S_{1} are orthogonal and symmetric positive semidefinite.

Problem 4.

Find a polar decomposition $A=Q S$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Draw a sketch showing $S(C)$ and $A(C)=Q(S(C))$, where C is the unit circle centered at the origin.

Solution: We compute its singular value decomposition and obtain

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=U \Sigma V^{T}
$$

so

$$
\begin{aligned}
Q & =\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{cc}
4 & 3 \\
-3 & 4
\end{array}\right], \\
S & =\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right],
\end{aligned}
$$

and

$$
A=\left(\frac{1}{5}\left[\begin{array}{cc}
4 & 3 \\
-3 & 4
\end{array}\right]\right)\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right] .
$$

Problem 5.

Show that a singular value decomposition $A=U \Sigma V^{T}$ can be written as

$$
A=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r} \overrightarrow{u_{r}}{\overrightarrow{v_{r}}}^{T} .
$$

Solution: We can rewrite the singular value decomposition of A as

$$
\begin{aligned}
& A=U \Sigma V^{T}=\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{cccccc}
\sigma_{1} & & & & & \\
& \ddots & & & & \\
& & \sigma_{r} & & & \\
& & & & & \\
& & & & & 0
\end{array}\right]\left[\begin{array}{ccc}
- & \overrightarrow{v_{1}} & - \\
& \vdots & \\
- & \overrightarrow{v_{m}} & -
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & \sigma_{1} \overrightarrow{v_{1}} & - \\
\vdots \\
& \\
\sigma_{r} \overrightarrow{v_{r}} & - \\
0 \\
\vdots & \\
0 &
\end{array}\right] \\
& =\sigma_{1}\left[\begin{array}{c}
\mid \\
\overrightarrow{u_{1}} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
-\overrightarrow{v_{1}} & -
\end{array}\right]+\cdots+\sigma_{1}\left[\begin{array}{c}
\mid \\
\overrightarrow{u_{1}} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
-\overrightarrow{v_{1}} & -
\end{array}\right]=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r} \overrightarrow{u_{r}}{\overrightarrow{v_{r}}}^{T}
\end{aligned}
$$

giving the desired decomposition.

Problem 6.

Find a decomposition $A=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\sigma_{2} \overrightarrow{u_{2}}{\overrightarrow{v_{2}}}^{T}$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Solution: We compute its singular value decomposition and obtain

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=U \Sigma V^{T} .
$$

We can read off this decomposition the following

$$
\overrightarrow{u_{1}}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \overrightarrow{u_{2}}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \overrightarrow{v_{1}}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right], \sigma_{1}=10, \sigma_{2}=5
$$

so

$$
\begin{aligned}
A & =10\left(\frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
2 & -1
\end{array}\right]\right)+10\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
8 & -2 \\
-8 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] .
\end{aligned}
$$

