Math 33A
Linear Algebra and Applications
Discussion 2

## Problem 1( $\star$ ).

Show that if $T$ is a linear transformation from $\mathbb{R}^{m}$ to $\mathbb{R}^{n}$, then

$$
T\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} T\left(\overrightarrow{e_{1}}\right)+\cdots+x_{m} T\left(\overrightarrow{e_{m}}\right)
$$

where $\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{m}}$ are the standard vectors in $\mathbb{R}^{m}$.

Solution: We can rewrite

$$
\begin{aligned}
T\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right] & =T\left(\left[\begin{array}{c}
x_{1} \\
0 \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
x_{2} \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
x_{m}
\end{array}\right]\right)=T\left(x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+x_{m}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right)= \\
& =T\left(x_{1} \overrightarrow{e_{1}}+\cdots+x_{m} \overrightarrow{e_{m}}\right)=T\left(x_{1} \overrightarrow{e_{1}}\right)+\cdots+T\left(x_{m} \overrightarrow{e_{m}}\right)=x_{1} T\left(\overrightarrow{e_{1}}\right)+\cdots+x_{m} T\left(\overrightarrow{e_{m}}\right)
\end{aligned}
$$

where the last two equalities are using that $T$ is linear.

## Problem 2.

Describe all linear transformations from $\mathbb{R}$ to $\mathbb{R}$. What do their graphs look like?

Solution: The linear transformations are of the form $[y]=[a][x]$ for some real number $a$. They encode the equation $y=a x$, which are lines through the origin.

## Problem 3.

Describe all linear transformations from $\mathbb{R}^{2}$ to $\mathbb{R}$. What do their graphs look like?

Solution: The linear transformations are of the form $[z]=\left[\begin{array}{ll}a & b\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ for some real numbers $a, b$. They encode the equation $z=a x+b y$, which is a plane through the origin.

## Problem 4.

Consider two linear transformations $\vec{y}=T(\vec{x})$ and $\vec{z}=L(\vec{y})$, where $T$ goes from $\mathbb{R}^{m}$ to $\mathbb{R}^{p}$ and $L$ goes from $\mathbb{R}^{p}$ to $\mathbb{R}^{n}$. Is the transformation $\vec{z}=L(T(\vec{x}))$ linear as well?

Solution: Yes. We can check that for vectors $\vec{x}, \overrightarrow{x_{1}}, \overrightarrow{x_{2}}$ and constant $k$ we have

$$
\begin{aligned}
L\left(T\left(\overrightarrow{x_{1}}+\overrightarrow{x_{2}}\right)\right) & =L\left(T\left(\overrightarrow{x_{1}}\right)+T\left(\overrightarrow{x_{2}}\right)\right)=L\left(T\left(\overrightarrow{x_{1}}\right)+L\left(T\left(\overrightarrow{x_{2}}\right)\right)\right. \\
L(T(k \vec{x})) & =L(k T(\vec{x}))=k L(T \vec{x}))
\end{aligned}
$$

so the transformation $L T$ is linear.

## Problem 5.

Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] .
$$

Find the matrix of the linear transformation $T(\vec{x})=B(A \vec{x})$.

Solution: We apply $T$ to the vectors $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$, and then $T$ will have matrix $\left[T\left(\overrightarrow{e_{1}}\right) T\left(\overrightarrow{e_{2}}\right)\right]$. Since

$$
\begin{aligned}
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=B\left(A\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=B\left(\left[\begin{array}{l}
a \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
p a+q c \\
r a+s c
\end{array}\right] \\
& T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=B\left(A\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=B\left(\left[\begin{array}{l}
b \\
d
\end{array}\right]\right)=\left[\begin{array}{l}
p b+q d \\
r b+s d
\end{array}\right]
\end{aligned}
$$

the associated matrix is

$$
\left[\begin{array}{ll}
p a+q c & p b+q d \\
r a+s c & r b+s d
\end{array}\right] .
$$

