Math 33A
Linear Algebra and Applications
Discussion 3

Problem 1.

Show that if a square matrix A has two equal columns, then A is not invertible.

Problem 2(\star).

Which of the following linear transformations T from \mathbb{R}^{3} to \mathbb{R}^{3} are invertible? Find the inverse if it exists.
(a) Reflection about a plane.
(b) Orthogonal projection onto a plane.
(c) Scaling by a real factor (namely, fix a real number r and consider $T(\vec{v})=r \vec{v}$, for all vectors \vec{v}).
(d) Rotation about an axis.

Problem 3.

A square matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0 . Give an example of two different 3×3 permutation matrices.

Problem 4.

Are permutation matrices invertible? If so, is the inverse a permutation matrix as well?

Problem 5.

Consider two invertible $n \times n$ matrices A and B. Is the linear transformation $\vec{y}=A(B(\vec{x}))$ invertible? If so, what is the inverse?

Problem 6.

Are the columns of an invertible matrix linearly independent?

Problem 7.

Consider linearly independent vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$ in \mathbb{R}^{n}, and let A be an invertible $m \times m$ matrix. Are the columns of the following matrix linearly independent?

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\
\mid & & \mid
\end{array}\right] A
$$

