Math 33A
Linear Algebra and Applications
Discussion 3

Problem 1.

Show that if a square matrix A has two equal columns, then A is not invertible.

Solution: Applying an elementary row operation to a matrix with two equal columns will result in a matrix with two equal columns. Say A is an $n \times n$ matrix, then $\operatorname{rref}(A)$ has two equal columns, so it is not I_{n}. To find the inverse of A, we would compute $\operatorname{rref}\left(\left[A \mid I_{n}\right]\right)$, but since $\operatorname{rref}(A) \neq I_{n}$ then $\operatorname{rref}\left(\left[A \mid I_{n}\right]\right) \neq\left[I_{n} \mid B\right]$, so A is not invertible.

Problem 2(\star).

Which of the following linear transformations T from \mathbb{R}^{3} to \mathbb{R}^{3} are invertible? Find the inverse if it exists.
(a) Reflection about a plane.
(b) Orthogonal projection onto a plane.
(c) Scaling by a real factor (namely, fix a real number r and consider $T(\vec{v})=r \vec{v}$, for all vectors \vec{v}).
(d) Rotation about an axis.

Solution:

1. Invertible, this transformation is its own inverse.
2. Not invertible, if \vec{v} is a vector perpendicular to the plane, then all the vectors $k \vec{v}$ for k a real number are sent to the same vector.
3. Invertible, the inverse is scaling by $1 / r$.
4. Invertible, the inverse is rotating about the same axis in the opposite direction.

Problem 3.

A square matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0 . Give an example of two different 3×3 permutation matrices.

Solution: Two different permutation matrices are

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Problem 4.

Are permutation matrices invertible? If so, is the inverse a permutation matrix as well?

Solution: Yes. Yes. Let A be an $n \times n$ permutation matrix, then to go from $\operatorname{rref}\left(\left[A \mid I_{n}\right]\right)$ to $\operatorname{rref}\left(\left[I_{n} \mid B\right]\right)$ we only need to permute rows, so B will have a 1 exactly once in each row and column.

Problem 5.

Consider two invertible $n \times n$ matrices A and B. Is the linear transformation $\vec{y}=A(B(\vec{x}))$ invertible? If so, what is the inverse?

Solution: Yes, the inverse is $\vec{x}=B^{-1}\left(A^{-1}(\vec{y})\right)$.

Problem 6.

Are the columns of an invertible matrix linearly independent?

Solution: Yes. If A is invertible then $\operatorname{ker}(A)=\{0\}$ so its columns are linearly independent.

Problem 7.

Consider linearly independent vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$ in \mathbb{R}^{n}, and let A be an invertible $m \times m$ matrix. Are the columns of the following matrix linearly independent?

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\
\mid & & \mid
\end{array}\right] A
$$

Solution: Yes. If A is invertible then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ so the columns of A are linearly independent. Also, since all the vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$ are linearly independent, then $\left[\begin{array}{ccc}\mid & & \mid \\ \overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\ \mid & & \mid\end{array}\right]$ has kernel $\{\overrightarrow{0}\}$. If \vec{x} is in the kernel of $\left[\begin{array}{ccc}\mid & & \mid \\ \overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\ \mid & & \mid\end{array}\right] A$ then $A \vec{x}$ is in the kernel of $\left[\begin{array}{ccc}\mid & & \mid \\ \overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\ \mid & & \mid\end{array}\right]$, so $A \vec{x}=\overrightarrow{0}$. Thus \vec{x} is in the kernel of A, so $\vec{x}=\overrightarrow{0}$.

This means that the matrix $\left[\begin{array}{ccc}\mid & & \mid \\ \overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\ \mid & & \mid\end{array}\right] A$ has kernel $\{\overrightarrow{0}\}$, so all its columns are linearly independent.

