Math 33A
Linear Algebra and Applications
Discussion 4

Problem 1(\star).

Consider a matrix A of the form

$$
A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right],
$$

where $a^{2}+b^{2}=1$ and $a \neq 1$. Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis

$$
\left[\begin{array}{c}
b \\
1-a
\end{array}\right],\left[\begin{array}{c}
a-1 \\
b
\end{array}\right] .
$$

Interpret the answer geometrically.

Problem 2.

Let A and B be square matrices, if there is an invertible matrix S such that $B=S^{-1} A S$ we say that A is similar to B. Find an invertible 2×2 matrix S such that

$$
S^{-1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] S
$$

is of the form

$$
\left[\begin{array}{cc}
0 & b \\
1 & d
\end{array}\right] .
$$

What can you say about two of those matrices?

Problem 3.

If A is a 2×2 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

show that A is similar to a diagonal matrix D. Find an invertible S such that $S^{-1} A S=$ D.

Problem 4.

If $c \neq 0$, find the matrix of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \vec{x}
$$

with respect to the basis

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
c
\end{array}\right] .
$$

Problem 5.

Is there a basis \mathfrak{B} of \mathbb{R}^{2} such that \mathfrak{B}-matrix B of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \vec{x}
$$

is upper triangular?

