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Problem 1.
Here is an infinite-dimensional version of Euclidean space: In the space of all infinite
sequences, consider the subspace ℓ2 of square-summable sequences (namely, those se-
quences (x1, x2, . . . ) for which the infinite series x2

1 + x2
2 + · · · converges). For x and y

in ℓ2, we define

||x⃗|| =
√

x2
1 + x2

2 + · · · and x⃗ · y⃗ = x1y1 + x2y2 + · · · .

A preliminary question is, why do ||x⃗|| and x⃗ · y⃗ make sense, that is, why are they finite
real numbers?

(a) Check that x⃗ = (1, 1/2, 1/4, 1/8, 1/16, . . . ) is in ℓ2, and find ||x⃗||. Recall the formula
for the geometric series: 1 + a+ a2 + a3 + · · · = 1/(1− a) if −1 < a < 1.

(b) Find the angle between (1, 0, 0, 0, . . . ) and (1, 1/2, 1/4, 1/8, . . . ).

(c) Give an example of a sequence (x1, x2, . . . ) that converges to 0 (limn→∞ xn = 0)
but does not belong to ℓ2.

(d) Let L be the subspace of ℓ2 spanned by (1, 1/2, 1/4, 1/8, . . . ). Find the orthogonal
projection of (1, 0, 0, 0, . . . ) onto L.

The Hilbert space ℓ2 was initially used mostly in physics: Werner Heisenberg’s formu-
lation of quantum mechanics is in terms of ℓ2. Today, this space is used in many other
applications, including economics. See, for example, the work of the economist Andreu
Mas-Colell of the University of Barcelona.

Solution:

(a) Using the formula for the geometric series ||x⃗||2 = 4/3 so ||x⃗|| = 2/
√
3.

(b) Set x⃗ = (1, 0, 0, 0, . . . ) and y⃗ = (1, 1/2, 1/4, 1/8, . . . ), then

θ = arccos

(
x⃗ · y⃗

||x⃗|| · ||y⃗||

)
= arccos

(
1

2/
√
3

)
= arccos

(√
3

2

)
=

π

6
.

(c) Consider x⃗ = (1, 1/
√
2, 1/

√
3, 1/

√
4, . . . ), then

||x⃗||2 =
√

1 +
1

2
+

1

3
+

1

4
+ · · · =

√√√√ ∞∑
n=1

1

n

which diverges since the harmonic series
∑∞

n=1
1
n
diverges.



(d) Let x⃗ = (1, 0, 0, 0, . . . ) and y⃗ = (1, 1/2, 1/4, 1/8, . . . ), we want the orthogonal
projection of x⃗ onto L = span(y⃗). For this, we first find a vector of length one
in the direction of y⃗, namely

u⃗ =
y⃗

||y⃗||
=

√
3

2

(
1,

1

2
,
1

4
,
1

8
, . . .

)
and now we compute

projL(x⃗) = (x⃗ · u⃗)u⃗ =

(√
3

2

) √
3

2

(
1,

1

2
,
1

4
,
1

8
, . . .

)
=

(
3

4
,
3

8
,
3

16
,
3

32
, . . .

)
.

Problem 2.
Give an algebraic proof for the triangle inequality

||v⃗ + w⃗|| ≤ ||v⃗||+ ||w⃗||.

Draw a sketch.

Solution: Note that

||v⃗ + w⃗||2 = (v⃗ + w⃗) · (v⃗ + w⃗) = v⃗ · v⃗ + v⃗ · w⃗ + w⃗ · v⃗ + w⃗ · w⃗ =

= ||v⃗||2 + 2(v⃗ · w⃗) + ||w⃗||2 ≤ ||v⃗||2 + 2(||v⃗|| · ||w⃗||) + ||w⃗||2 = (||v⃗||+ ||w⃗||)2

where we have used the Cauchy-Schwarz inequality. Thus ||v⃗ + w⃗|| ≤ ||v⃗||+ ||w⃗||.

Problem 3(⋆).

(a) Consider a vector v⃗ in Rn, and a scalar k. Show that ||kv⃗|| = |k|||v⃗||.
(b) Show that if v⃗ is a nonzero vector in Rn, then u⃗ = v⃗

||v⃗|| is a unit vector.

Solution:

(a) Note that
||kv⃗||2 = (kv⃗) · (kv⃗) = k2(v⃗ · v⃗) = k2||v⃗||2

and thus taking square roots ||kv⃗|| = |k|||v⃗|| since |k| =
√
k2.

(b) We compute

||u⃗|| =
∣∣∣∣∣∣∣∣ v⃗

||v⃗||

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ 1

||v⃗||
v⃗

∣∣∣∣∣∣∣∣ = 1

||v⃗||
||v⃗|| = 1

using what we just proved.



Problem 4.
Can you find a line L in Rn and a vector x⃗ in Rn such that x⃗ · projLx⃗ is negative?
Explain, arguing algebraically.

Solution: No. Let x⃗ = x⃗|| + x⃗⊥ be the decomposition of x⃗ into the components
parallel and perpendicular to L. In particular x⃗|| = projLx⃗ and x⃗⊥ · x⃗|| = 0. Now

x⃗ · projLx⃗ = (x⃗|| + x⃗⊥) · x⃗|| = x⃗|| · x⃗|| + x⃗⊥ · x⃗|| = ||x⃗||||2 ≥ 0.


