Math 33A
Linear Algebra and Applications
Discussion 5

Problem 1.

Here is an infinite-dimensional version of Euclidean space: In the space of all infinite sequences, consider the subspace ℓ_{2} of square-summable sequences (namely, those sequences $\left(x_{1}, x_{2}, \ldots\right)$ for which the infinite series $x_{1}^{2}+x_{2}^{2}+\cdots$ converges). For x and y in ℓ_{2}, we define

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots} \quad \text { and } \quad \vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots
$$

A preliminary question is, why do $\|\vec{x}\|$ and $\vec{x} \cdot \vec{y}$ make sense, that is, why are they finite real numbers?
(a) Check that $\vec{x}=(1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots)$ is in ℓ_{2}, and find $\|\vec{x}\|$. Recall the formula for the geometric series: $1+a+a^{2}+a^{3}+\cdots=1 /(1-a)$ if $-1<a<1$.
(b) Find the angle between $(1,0,0,0, \ldots)$ and $(1,1 / 2,1 / 4,1 / 8, \ldots)$.
(c) Give an example of a sequence $\left(x_{1}, x_{2}, \ldots\right)$ that converges to $0\left(\lim _{n \rightarrow \infty} x_{n}=0\right)$ but does not belong to ℓ_{2}.
(d) Let L be the subspace of ℓ_{2} spanned by $(1,1 / 2,1 / 4,1 / 8, \ldots)$. Find the orthogonal projection of $(1,0,0,0, \ldots)$ onto L.
The Hilbert space ℓ_{2} was initially used mostly in physics: Werner Heisenberg's formulation of quantum mechanics is in terms of ℓ_{2}. Today, this space is used in many other applications, including economics. See, for example, the work of the economist Andreu Mas-Colell of the University of Barcelona.

Solution:

(a) Using the formula for the geometric series $\|\vec{x}\|^{2}=4 / 3$ so $\|\vec{x}\|=2 / \sqrt{3}$.
(b) Set $\vec{x}=(1,0,0,0, \ldots)$ and $\vec{y}=(1,1 / 2,1 / 4,1 / 8, \ldots)$, then

$$
\theta=\arccos \left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \cdot\|\vec{y}\|}\right)=\arccos \left(\frac{1}{2 / \sqrt{3}}\right)=\arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} .
$$

(c) Consider $\vec{x}=(1,1 / \sqrt{2}, 1 / \sqrt{3}, 1 / \sqrt{4}, \ldots)$, then

$$
\|\vec{x}\|^{2}=\sqrt{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots}=\sqrt{\sum_{n=1}^{\infty} \frac{1}{n}}
$$

which diverges since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(d) Let $\vec{x}=(1,0,0,0, \ldots)$ and $\vec{y}=(1,1 / 2,1 / 4,1 / 8, \ldots)$, we want the orthogonal projection of \vec{x} onto $L=\operatorname{span}(\vec{y})$. For this, we first find a vector of length one in the direction of \vec{y}, namely

$$
\vec{u}=\frac{\vec{y}}{\|\vec{y}\|}=\frac{\sqrt{3}}{2}\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)
$$

and now we compute

$$
\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(\frac{\sqrt{3}}{2}\right) \frac{\sqrt{3}}{2}\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)=\left(\frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \ldots\right) .
$$

Problem 2.

Give an algebraic proof for the triangle inequality

$$
\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\| .
$$

Draw a sketch.

Solution: Note that

$$
\begin{aligned}
\|\vec{v}+\vec{w}\|^{2} & =(\vec{v}+\vec{w}) \cdot(\vec{v}+\vec{w})=\vec{v} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{v}+\vec{w} \cdot \vec{w}= \\
& =\|\vec{v}\|^{2}+2(\vec{v} \cdot \vec{w})+\|\vec{w}\|^{2} \leq\|\vec{v}\|^{2}+2(\|\vec{v}\| \cdot\|\vec{w}\|)+\|\vec{w}\|^{2}=(\|\vec{v}\|+\|\vec{w}\|)^{2}
\end{aligned}
$$

where we have used the Cauchy-Schwarz inequality. Thus $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$.

Problem 3(\star).

(a) Consider a vector \vec{v} in \mathbb{R}^{n}, and a scalar k. Show that $\|k \vec{v}\|=|k|\|\vec{v}\|$.
(b) Show that if \vec{v} is a nonzero vector in \mathbb{R}^{n}, then $\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector.

Solution:

(a) Note that

$$
\|k \vec{v}\|^{2}=(k \vec{v}) \cdot(k \vec{v})=k^{2}(\vec{v} \cdot \vec{v})=k^{2}\|\vec{v}\|^{2}
$$

and thus taking square roots $\|k \vec{v}\|=|k|| | \vec{v} \|$ since $|k|=\sqrt{k^{2}}$.
(b) We compute

$$
\|\vec{u}\|=\left\|\frac{\vec{v}}{\|\vec{v}\|}\right\|=\left\|\frac{1}{\|\vec{v}\|} \vec{v}\right\|=\frac{1}{\|\vec{v}\|}\|\vec{v}\|=1
$$

using what we just proved.

Problem 4.

Can you find a line L in \mathbb{R}^{n} and a vector \vec{x} in \mathbb{R}^{n} such that $\vec{x} \cdot \operatorname{proj}_{L} \vec{x}$ is negative? Explain, arguing algebraically.

Solution: No. Let $\vec{x}=\vec{x}^{\|}+\vec{x}^{\perp}$ be the decomposition of \vec{x} into the components parallel and perpendicular to L. In particular $\vec{x}^{\|}=\operatorname{proj}_{L} \vec{x}$ and $\vec{x}^{\perp} \cdot \vec{x}^{\|}=0$. Now

$$
\vec{x} \cdot \operatorname{proj}_{L} \vec{x}=\left(\vec{x}^{\|}+\vec{x}^{\perp}\right) \cdot \vec{x}^{\|}=\vec{x}^{\|} \cdot \vec{x}^{\|}+\vec{x}^{\perp} \cdot \vec{x}^{\|}=\left\|\vec{x}^{\|}\right\|^{2} \geq 0
$$

