Math 33A Linear Algebra and Applications

Discussion 6

Problem $1(\star)$.

The following is one way to define the quaternions, discovered in 1843 by the Irish mathematician Sir W. R. Hamilton. Consider the set H of all 4×4 matrices M of the form

$$M = \begin{bmatrix} p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \\ s & r & -q & p \end{bmatrix}$$

where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned form as

$$M = \begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix}$$

where A and B are rotation–scaling matrices.

- (a) Show that H is closed under addition: If M and N are in H, then so is M + N.
- (b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary scalar, then kM is in H.
- (c) The above show that H is a subspace of the linear space $\mathbb{R}^{4\times 4}$. Find a basis of H, and thus determine the dimension of H.
- (d) Show that H is closed under multiplication: If M and N are in H, then so is MN.
- (e) Show that if M is in H, then so is M^T .
- (f) For a matrix M in H, compute $M^T M$.
- (g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M^{-1} necessarily in H as well?
- (h) If M and N are in H, does the equation MN = NM always hold?

Problem 2.

Consider a consistent system $A\vec{x} = \vec{b}$.

- (a) Show that this system has a solution $\vec{x_0}$ in $(\ker A)^{\perp}$. Justify why an arbitrary solution \vec{x} of the system can be written as $\vec{x} = \vec{x_h} + \vec{x_0}$, where $\vec{x_h}$ is in ker(A) and $\vec{x_0}$ is in $(\ker A)^{\perp}$.
- (b) Show that the system $A\vec{x} = \vec{b}$ has only one solution in $(\ker A)^{\perp}$.
- (c) If $\vec{x_0}$ is the solution in $(\ker A)^{\perp}$ and $\vec{x_1}$ is another solution of the system $A\vec{x} = \vec{b}$, show that $||\vec{x_0}|| < ||\vec{x_1}||$. The vector $\vec{x_0}$ is called the minimal solution of the linear system $A\vec{x} = \vec{b}$.

Problem 3.

Define the term minimal least-squares solution of a linear system. Explain why the minimal least-squares solution \vec{x}^* of a linear system $A\vec{x} = \vec{b}$ is in $(\ker A)^{\perp}$.