Math 33A
Linear Algebra and Applications
Discussion 6

Problem 1(\star).

The following is one way to define the quaternions, discovered in 1843 by the Irish mathematician Sir W. R. Hamilton. Consider the set H of all 4×4 matrices M of the form

$$
M=\left[\begin{array}{cccc}
p & -q & -r & -s \\
q & p & s & -r \\
r & -s & p & q \\
s & r & -q & p
\end{array}\right]
$$

where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned form as

$$
M=\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]
$$

where A and B are rotation-scaling matrices.
(a) Show that H is closed under addition: If M and N are in H, then so is $M+N$.
(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary scalar, then $k M$ is in H.
(c) The above show that H is a subspace of the linear space $\mathbb{R}^{4 \times 4}$. Find a basis of H, and thus determine the dimension of H.
(d) Show that H is closed under multiplication: If M and N are in H, then so is $M N$.
(e) Show that if M is in H, then so is M^{T}.
(f) For a matrix M in H, compute $M^{T} M$.
(g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M^{-1} necessarily in H as well?
(h) If M and N are in H, does the equation $M N=N M$ always hold?

Problem 2.

Consider a consistent system $A \vec{x}=\vec{b}$.
(a) Show that this system has a solution $\overrightarrow{x_{0}}$ in $(\operatorname{ker} A)^{\perp}$. Justify why an arbitrary solution \vec{x} of the system can be written as $\vec{x}=\overrightarrow{x_{h}}+\overrightarrow{x_{0}}$, where $\overrightarrow{x_{h}}$ is in $\operatorname{ker}(A)$ and $\overrightarrow{x_{0}}$ is in $(\operatorname{ker} A)^{\perp}$.
(b) Show that the system $A \vec{x}=\vec{b}$ has only one solution in $(\operatorname{ker} A)^{\perp}$.
(c) If $\overrightarrow{x_{0}}$ is the solution in $(\operatorname{ker} A)^{\perp}$ and $\overrightarrow{x_{1}}$ is another solution of the system $A \vec{x}=\vec{b}$, show that $\left\|\overrightarrow{x_{0}}\right\|<\left\|\overrightarrow{x_{1}}\right\|$. The vector $\overrightarrow{x_{0}}$ is called the minimal solution of the linear system $A \vec{x}=\vec{b}$.

Problem 3.

Define the term minimal least-squares solution of a linear system. Explain why the minimal least-squares solution \vec{x}^{*} of a linear system $A \vec{x}=\vec{b}$ is in $(\operatorname{ker} A)^{\perp}$.

