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Problem 1(⋆).
The following is one way to define the quaternions, discovered in 1843 by the Irish
mathematician Sir W. R. Hamilton. Consider the set H of all 4× 4 matrices M of the
form

M =


p −q −r −s
q p s −r
r −s p q
s r −q p


where p, q, r, s are arbitrary real numbers. We can writeM more succinctly in partitioned
form as

M =

[
A −BT

B AT

]
where A and B are rotation–scaling matrices.

(a) Show that H is closed under addition: If M and N are in H, then so is M +N .

(b) Show that H is closed under scalar multiplication: IfM is in H and k is an arbitrary
scalar, then kM is in H.

(c) The above show that H is a subspace of the linear space R4×4. Find a basis of H,
and thus determine the dimension of H.

(d) Show that H is closed under multiplication: If M and N are in H, then so is MN .

(e) Show that if M is in H, then so is MT .

(f) For a matrix M in H, compute MTM .

(g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M−1

necessarily in H as well?

(h) If M and N are in H, does the equation MN = NM always hold?

Solution:

(a) When we add two matrices in H we obtain another matrix in H[
A −BT

B AT

]
+

[
C −DT

D CT

]
=

[
(A+ C) −(B +D)T

(B +D) (A+ C)T

]
.

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

k

[
A −BT

B AT

]
=

[
(kA) −(kB)T

(kB) (kA)T

]
.

(c) The general element of H has four arbitrary constants, so H has dimension 4.
A basis is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .



(d) When we multiply two matrices in H we obtain another matrix in H[
A −BT

B AT

] [
C −DT

D CT

]
=

[
(AC −BTD) −(BC + ATD)T

(BC + ATD) (AC −BTD)T

]
where it is useful to notice that since all A, B, C, D are rotation–scaling
matrices, they commute with each other.

(e) When we transpose a matrix in H we obtain another matrix in H[
A −BT

B AT

]T
=

[
(AT ) −(−B)T

(−B) (AT )T

]
.

(f) We expand MTM as
p q r s
−q p −s r
−r s p −q
−s −r q p



p −q −r −s
q p s −r
r −s p q
s r −q p

 = (p2 + q2 + r2 + s2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

(g) If M ̸= 0 then p2 + q2 + r2 + s2 ̸= 0 so by the above

MTM = (p2 + q2 + r2 + s2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and thus (

1

(p2 + q2 + r2 + s2)
MT

)
M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


so

M−1 =
1

(p2 + q2 + r2 + s2)
MT =

1

(p2 + q2 + r2 + s2)


p q r s
−q p −s r
−r s p −q
−s −r q p

 .

Problem 2.
Consider a consistent system Ax⃗ = b⃗.

(a) Show that this system has a solution x⃗0 in (kerA)⊥. Justify why an arbitrary
solution x⃗ of the system can be written as x⃗ = x⃗h + x⃗0, where x⃗h is in ker(A) and



x⃗0 is in (kerA)⊥.

(b) Show that the system Ax⃗ = b⃗ has only one solution in (kerA)⊥.

(c) If x⃗0 is the solution in (kerA)⊥ and x⃗1 is another solution of the system Ax⃗ = b⃗,
show that ||x⃗0|| < ||x⃗1||. The vector x⃗0 is called the minimal solution of the linear

system Ax⃗ = b⃗.

Solution:

(a) Since the system Ax⃗ = b⃗ is consistent, it has at least one solution x⃗. Let
x⃗ = x⃗|| + x⃗⊥ be the decomposition of x⃗ into the components parallel and
perpendicular to V = ker(A). In particular x⃗⊥ is in (ker(A))⊥ and x⃗|| = projV x⃗
is in ker(A) so Ax⃗|| = 0⃗. Now

b⃗ = Ax⃗ = A(x⃗|| + x⃗⊥) = Ax⃗|| + Ax⃗⊥ = Ax⃗⊥

so x⃗0 = x⃗⊥ is a solution of the system in (ker(A))⊥ and x⃗h = x⃗|| is in ker(A).

(b) Suppose that Ax⃗ = b⃗ has two solutions x⃗1 and x⃗2 in (ker(A))⊥. Since (ker(A))⊥

is a linear subspace, then x⃗1−x⃗2 is in (ker(A))⊥. Thus A(x⃗1−x⃗2) = Ax⃗1−Ax⃗2 =

b⃗− b⃗ = 0⃗ so x⃗1 − x⃗2 is in ker(A). Now x⃗1 − x⃗2 is both in ker(A) and (ker(A))⊥,
but 0⃗ is the only element in both subspaces, so x⃗1 − x⃗2 = 0⃗. Thus x⃗1 = x⃗2.

(c) Let x⃗1 = x⃗1
||+x⃗1

⊥ be the decomposition of x⃗1 into the components parallel and
perpendicular to V = ker(A). Now by the first part above we have that x⃗1

⊥ is
a solution of the system in (ker(A))⊥. Since x⃗0 is also a solution of the system
in (ker(A))⊥, by the second part above we have x⃗1

⊥ = x⃗0. Since x⃗1 ̸= x⃗0 we
have x⃗1

|| ̸= 0⃗, so ||x⃗1
|||| > 0 and by the Pythagoras theorem

||x⃗1|| = ||x⃗1
|| + x⃗0|| ≥ ||x⃗1

||||+ ||x⃗0|| > ||x⃗0||.

Problem 3.
Define the term minimal least-squares solution of a linear system. Explain why the
minimal least-squares solution x⃗∗ of a linear system Ax⃗ = b⃗ is in (kerA)⊥.

Solution: We know that the least-squares solution of a linear system Ax⃗ = b⃗ are
the exact solutions of the consistent linear system ATAx⃗ = AT b⃗. In the previous
problem we defined the term minimal solution of a consistent linear system. We
then define the minimal least-squares solution of the linear system Ax⃗ = b⃗ to be the
minimal solutions of the consistent linear system ATAx⃗ = AT b⃗.

We first prove that ker(A) = ker(ATA), this will be useful. Let v⃗ be in ker(A), then
ATAv⃗ = AT 0⃗ = 0⃗ so v⃗ is in ker(ATA). Let v⃗ be in ker(ATA), then 0⃗ = ATAv⃗ =



AT (A⃗v⃗) so Av⃗ is in ker(AT ). Now Av⃗ is in im(A), and also in ker(AT ) = (im(A))⊥,
but 0⃗ is the only element in both subspaces, so Av⃗ = 0⃗, so v⃗ is in ker(A).

Now, let x⃗∗ be the minimal least-squares solution of the linear system Ax⃗ = b⃗. Then
x⃗∗ is the minimal solutions of the consistent linear system ATAx⃗ = AT b⃗, so by the
previous exercise x⃗∗ is in (ker(ATA))⊥ = (ker(A))⊥.


