Math 33A
Linear Algebra and Applications

Discussion 6



Problem 1(x).
The following is one way to define the quaternions, discovered in 1843 by the Irish
mathematician Sir W. R. Hamilton. Consider the set H of all 4 x 4 matrices M of the

form
p —q —r =S
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where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned
form as .
A —-B
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where A and B are rotation—scaling matrices.
(a) Show that H is closed under addition: If M and N are in H, then so is M + N.

(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary
scalar, then kM is in H.

(c) The above show that H is a subspace of the linear space R***. Find a basis of H,
and thus determine the dimension of H.

Show that H is closed under multiplication: If M and N are in H, then so is M N.
Show that if M is in H, then so is M”.
For a matrix M in H, compute M7 M.

Which matrices M in H are invertible? If a matrix M in H is invertible, is M !
necessarily in H as well?

(h) If M and N are in H, does the equation MN = NM always hold?
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Solution:

(a) When we add two matrices in H we obtain another matrix in H

5wt p o=l Wier |

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

5 )= s @]

(c) The general element of H has four arbitrary constants, so H has dimension 4.

A basis is
1 000 0 -1 0 0 00 —1 0 0 0 0 -1
0100 1 0 0 0 00 0 -1 0O 0 1 0
oo1of’”0 O O 1f{’jr 0 0 Of”]10 -1 0 O
0 001 0 0 -1 0 01 0 0 1 0 0 0




(d) When we multiply two matrices in H we obtain another matrix in H

3 ][5 &) lacsen ]

where it is useful to notice that since all A, B, C, D are rotation—scaling
matrices, they commute with each other.

(e) When we transpose a matrix in H we obtain another matrix in H
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(f) We expand M7 M as
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(g) If M # 0 then p* + ¢*> + 72 + s> # 0 so by the above
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Problem 2.
Consider a consistent system Az = b.

(a) Show that this system has a solution zp in (ker A)*. Justify why an arbitrary
solution  of the system can be written as & = 2}, + %y, where 27, is in ker(A) and



7y is in (ker A)*.
(b) Show that the system AZ = b has only one solution in (ker A)*.

(¢) If 2 is the solution in (ker A)* and 7 is another solution of the system AZ = b,
show that ||zp]| < ||#1]|. The vector #j is called the minimal solution of the linear

system AZ = b.

Solution:

(a) Since the system AZ = b is consistent, it has at least one solution Z. Let
7 = @l + #+ be the decomposition of Z into the components parallel and
perpendicular to V = ker(A). In particular Z* is in (ker(A4))* and &l = proj &

is in ker(A) so Azl = 0. Now

b= A7 = A(@ + #4) = AZl + Azt = Azt

al

so 7y = ' is a solution of the system in (ker(A))* and 2;, = #l is in ker(A).

(b) Suppose that AZ = b has two solutions # and @3 in (ker(4))*. Since (ker(A))*
is a linear subspace, then 2 — % is in (ker(A))*. Thus A(2]—23) = A7, —Azy =
b—b=0soz; — % is in ker(A). Now & — & is both in ker(A) and (ker(A))™,

but 0 is the only element in both subspaces, so 7 — 25 = 0. Thus 7] = z3.

(c) Let 27 = .ﬂ” +2,% be the decomposition of z7 into the components parallel and
perpendicular to V = ker(A). Now by the first part above we have that 77 is
a solution of the system in (ker(A))*. Since 7y is also a solution of the system
in (ker(A))*, by the second part above we have ;" = #). Since 7] # & we
have 23/l £ 0, so Ha:]”H > 0 and by the Pythagoras theorem

1] = N3+ 5l = ]+ ] > [lz]l-

Problem 3.
Define the term minimal least-squares solution of a linear system. Explain why the
minimal least-squares solution Z* of a linear system AZ = b is in (ker A)*.

Solution: We know that the least-squares solution of a linear system A# = b are
the exact solutions of the consistent linear system AT AT = ATh. In the previous
problem we defined the term minimal solution of a consistent linear system. We
then define the minimal least-squares solution of the linear system Ax = b to be the
minimal solutions of the consistent linear system ATAZ = ATb.

We first prove that ker(A) = ker(AT A), this will be useful. Let @ be in ker(A), then
ATAG = AT0 = 0 so ¥ is in ker(ATA). Let @ be in ker(ATA), then 0 = ATAG =




AT(AD) so AT is in ker(AT). Now A7 is in im(A), and also in ker(AT) = (im(A))*,
but 0 is the only element in both subspaces, so Av' =0, so ¥ is in ker(A).
Now, let ©* be the minimal least-squares solution of the linear system Ax = b. Then

#* is the minimal solutions of the consistent linear system AT A% = ATI;, so by the
previous exercise 7* is in (ker(AT A))+ = (ker(A))*.




