Math 33A
Linear Algebra and Applications
Discussion 8

Problem 1.

In his groundbreaking text Ars Magna, the Italian mathematician Gerolamo Cardano explains how to solve cubic equations. In Chapter XI, he considers the following example: $x^{3}+6 x=20$.
(a) Explain why this equation has exactly one (real) solution. Here, this solution is easy to find by inspection. The point of this exercise is to show a systematic way to find it.
(b) Cardano explains his method as follows (we are using modern notation for the variables): "I take two cubes v^{3} and u^{3} whose difference shall be 20 , so that the product vu shall be 2 , that is, a third of the coefficient of the unknown x. Then, I say that $v-u$ is the value of the unknown $x "$. Show that if v and u are chosen as stated by Cardano, then $x=v-u$ is indeed the solution of the equation $x^{3}+6 x=20$.
(c) Solve the system

$$
\begin{aligned}
v^{3}-u^{3} & =20 \\
v u & =2
\end{aligned}
$$

to find u and v.
(d) Consider the equation $x^{3}+p x=q$, where p is positive. Using your previous work as a guide, show that the unique solution of this equation is

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}-\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} .
$$

Check that this solution can also be written as

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} .
$$

What can go wrong when p is negative?
(e) Consider an arbitrary cubic equation $x^{3}+a x^{2}+b x+c=0$. Show that the substitution $x=t-(a / 3)$ allows you to write this equation as $t^{3}+p t=q$.

Problem 2.

Consider an $n \times n$ matrix A. A subspace V of \mathbb{R}^{n} is said to be A-invariant if $A \vec{v}$ is in V for all \vec{v} in V. Describe all the one-dimensional A-invariant subspaces of \mathbb{R}^{n} in terms of the eigenvectors of A.

Problem 3.

Consider an arbitrary $n \times n$ matrix A. What is the relationship between the characteristic polynomials of A and A^{T} ? What does your answer tell you about the eigenvalues of A and A^{T} ?

Problem 4(\star).

Suppose matrix A is similar to B. What is the relationship between the characteristic polynomials of A and B ? What does your answer tell you about the eigenvalues of A and B ?

