Math 33A
Linear Algebra and Applications
Discussion 9

Problem 1.

Consider the $n \times n$ matrix

$$
J_{n}(k)=\left[\begin{array}{cccccc}
k & 1 & 0 & \cdots & 0 & 0 \\
0 & k & 1 & \cdots & 0 & 0 \\
0 & 0 & k & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & k & 1 \\
0 & 0 & 0 & \cdots & 0 & k
\end{array}\right]
$$

(with all k 's on the diagonal and 1's directly above), where k is an arbitrary constant. Find the eigenvalue(s) of $J_{n}(k)$, and determine their algebraic and geometric multiplicities.

Problem 2(\star).

Are the following matrices similar?

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Problem 3.

Consider a nonzero 3×3 matrix A such that $A^{2}=0$.
(a) Show that the image of A is a subspace of the kernel of A.
(b) Find the dimensions of the image and kernel of A.
(c) Pick a nonzero vector v_{1} in the image of A, and write $\overrightarrow{v_{1}}=A \overrightarrow{v_{2}}$ for some $\overrightarrow{v_{2}}$ in \mathbb{R}^{3}. Let $\overrightarrow{v_{3}}$ be a vector in the kernel of A that fails to be a scalar multiple of $\overrightarrow{v_{1}}$. Show that $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is a basis of \mathbb{R}^{3}.
(d) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to basis \mathfrak{B}.

Problem 4.

If A and B are two nonzero 3×3 matrices such that $A^{2}=B^{2}=0$, is A necessarily similar to B ?

Problem 5.

For the matrix

$$
A=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]
$$

find an invertible matrix S such that

$$
S^{-1} A S=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Problem 6.

Consider an $n \times n$ matrix A such that $A^{2}=0$, with $\operatorname{rank}(A)=r$ (above we have seen the case $n=3$ and $r=1$). Show that A is similar to the block matrix

$$
B=\left[\begin{array}{cccccc}
J & 0 & \cdots & 0 & \cdots & 0 \\
0 & J & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \cdots & J & \cdots & 0 \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right], \quad \text { where } \quad J=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Matrix B has r blocks of the form J along the diagonal, with all other entries being 0 . To show this, proceed as in the case above: Pick a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ of the image of A, write $\overrightarrow{v_{i}}=A \overrightarrow{w_{i}}$ for $i=1, \ldots, r$, and expand $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ to a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ of the kernel of A. Show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n}, and show that B is the matrix of $T(\vec{x})=A \vec{x}$ with respect to this basis.

